A neural network model of a quasiperiodic elliptically polarizing undulator in universal mode.

J Synchrotron Radiat

Canadian Light Source, 44 Innovation Blvd, Saskatoon, Saskatchewan, Canada.

Published: November 2022

Machine learning has recently been applied and deployed at several light source facilities in the domain of accelerator physics. Here, an approach based on machine learning to produce a fast-executing model is introduced that predicts the polarization and energy of the radiated light produced at an insertion device. This paper demonstrates how a machine learning model can be trained on simulated data and later calibrated to a smaller, limited measured data set, a technique referred to as transfer learning. This result will enable users to efficiently determine the insertion device settings for achieving arbitrary beam characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641560PMC
http://dx.doi.org/10.1107/S1600577522008554DOI Listing

Publication Analysis

Top Keywords

machine learning
12
insertion device
8
neural network
4
network model
4
model quasiperiodic
4
quasiperiodic elliptically
4
elliptically polarizing
4
polarizing undulator
4
undulator universal
4
universal mode
4

Similar Publications

Microfluidic and Computational Tools for Neurodegeneration Studies.

Annu Rev Chem Biomol Eng

January 2025

1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:

Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.

View Article and Find Full Text PDF

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!