AI Article Synopsis

  • Recent advancements in Terahertz (THz) technology are positioning THz communications as crucial for future communication networks, particularly in nano-communication applications.
  • The small beamwidths and transceiver sizes at THz frequencies make them suitable for in-body and on-body communications, overcoming limitations of traditional methods.
  • The paper reviews THz device technologies, channel modeling, modulation schemes, and networking topologies, while also highlighting THz applications in healthcare, particularly for detecting zoonotic viruses like Coronavirus and identifying research gaps in this field.

Article Abstract

Following recent advancements in Terahertz (THz) technology, THz communications are currently being celebrated as key enablers for various applications in future generations of communication networks. While typical communication use cases are over medium-range air interfaces, the inherently small beamwidths and transceiver footprints at THz frequencies support nano-communication paradigms. In particular, the use of the THz band for in-body and on-body communications has been gaining attention recently. By exploiting the accurate THz sensing and imaging capabilities, body-centric THz biomedical applications can transcend the limitations of molecular, acoustic, and radio-frequency solutions. In this paper, we study the use of the THz band for body-centric networks, by surveying works on THz device technologies, channel and noise modeling, modulation schemes, and networking topologies. We also promote THz sensing and imaging applications in the healthcare sector, especially for detecting zootonic viruses such as Coronavirus. We present several open research problems for body-centric THz networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564038PMC
http://dx.doi.org/10.1109/TMBMC.2021.3135198DOI Listing

Publication Analysis

Top Keywords

thz
10
thz band
8
thz sensing
8
sensing imaging
8
body-centric thz
8
body-centric
4
body-centric terahertz
4
networks
4
terahertz networks
4
networks prospects
4

Similar Publications

A Novel Hollow Core Antiresonant Fiber-Based Biosensor for Blood Component Detection in the THz Regime.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, SRM Institute of Science and Technology (Deemed to be University), Tech Park, SRM Nagar, Kattankulathur, Kattankulathur, Tamilnadu, 603203, INDIA.

This article proposes a novel biosensor based on a five-semi-circular cladding tube hollow core antiresonant fiber (HC-ARF) with a frequency range of 0.5-2.8 THz, using Zeonex as the background material.

View Article and Find Full Text PDF

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.

View Article and Find Full Text PDF

Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!