Background And Objective: Traditional targeted metabolomic investigations identify a pre-defined list of analytes in samples and have been widely used for decades in the diagnosis and monitoring of inborn errors of metabolism (IEMs). Recent technological advances have resulted in the development and maturation of untargeted metabolomics: a holistic, unbiased, analytical approach to detecting metabolic disturbances in human disease. We aim to provide a summary of untargeted metabolomics [focusing on tandem mass spectrometry (MS-MS)] and its application in the field of IEMs.
Methods: Data for this review was identified through a literature search using PubMed, Google Scholar, and personal repositories of articles collected by the authors. Findings are presented within several sections describing the metabolome, the current use of targeted metabolomics in the diagnostic pathway of patients with IEMs, the more recent integration of untargeted metabolomics into clinical care, and the limitations of this newly employed analytical technique.
Key Content And Findings: Untargeted metabolomic investigations are increasingly utilized in screening for rare disorders, improving understanding of cellular and subcellular physiology, discovering novel biomarkers, monitoring therapy, and functionally validating genomic variants. Although the untargeted metabolomic approach has some limitations, this "next generation metabolic screening" platform is becoming increasingly affordable and accessible.
Conclusions: When used in conjunction with genomics and the other promising "-omic" technologies, untargeted metabolomics has the potential to revolutionize the diagnostics of IEMs (and other rare disorders), improving both clinical and health economic outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636448 | PMC |
http://dx.doi.org/10.21037/tp-22-105 | DOI Listing |
Methods Mol Biol
January 2025
Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.
A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.
The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK.
Untargeted analysis by LC-MS is a valuable tool for metabolic profiling (metabonomics/metabolomics), and applications of this technology have grown rapidly over the past decade. LC-MS offers advantages of speed, sensitivity, relative ease of sample preparation, and large dynamic range compared to other platforms in this role. However, like any analytical approach, there are still drawbacks and challenges that have to be overcome, some of which are being addressed by advances in both column chemistries and instrumentation.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Research and Innovation Centre, Fondazione E. Mach, Trento, Italy.
Liquid Chromatography-Mass Spectrometry (LC-MS) untargeted experiments require complex bioinformatic strategies to extract information from the experimental data. Here we discuss the "data preprocessing," the set of procedures performed on the raw data to produce a data matrix which will be the starting point for the subsequent statistical analysis. Data preprocessing is a crucial step on the path to knowledge extraction, which should be carefully controlled and optimized in order to maximize the output of any untargeted metabolomics investigation.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Systems Medicine, Department of Metabolism Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK.
Metabolic profiling performed using untargeted metabolomics of different, complex biological samples aims to apply agnostic/holistic, hypothesis-free, analysis of the small molecules that are present in the analyzed sample. This approach has been the center of major investments and dedicated efforts from the research community for many years. However, limitations and challenges remain, particularly with regard to the validation and the quality of the obtained results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!