In this paper, we analyzed the homologous series of 10 allylamine adducts with -alcohols from methanol to decanol. These are the first adduct structures containing aliphatic -alcohols and an aliphatic amine as co-formers. While all of the ingredients are liquids under ambient conditions, the phases were synthesized with the use of the crystallization technique assisted by IR laser-focused radiation at atmospheric pressure. The structures were characterized by single-crystal X-ray diffraction. All of the phases contain the amine and alcohol in a 1:1 ratio. The architecture of the structures, based on hydrogen-bonding interactions between NH and OH moieties, depends on the size of the alcohol and changes in a systematic way. The three smallest alcohol adducts contain centrosymmetric layers of molecules of the L4(4)8(8) type. The next four alcohol adducts have the T4(2) topology. The structures with the biggest alcohols contain non-centrosymmetric L6(6) layers. The structural investigations were supported by periodic DFT calculations at the B3LYP/pobTZVP level. The cohesive and adhesive energies made up of layer ( ) and ribbon ( ) binding energies were used to predict which type of architecture can be formed. The thermal stabilities of the adducts correlate with the melting points of the co-forming alcohols, with no evident relation to the adduct architecture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635617PMC
http://dx.doi.org/10.1021/acs.cgd.2c00316DOI Listing

Publication Analysis

Top Keywords

single-crystal x-ray
8
x-ray diffraction
8
alcohol adducts
8
adducts
5
hydrogen-bonding motifs
4
motifs adducts
4
adducts allylamine
4
allylamine simplest
4
simplest -alcohols
4
-alcohols single-crystal
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

High-Performance Oxide Crystal BaTeWO X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeWO (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied.

View Article and Find Full Text PDF

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

A squaramide-based monomer, designed for topochemical azide-alkyne cycloaddition (TAAC) polymerization, crystallizes as two polymorphs, M1 and M2, both having crystal packing suitable for topochemical polymerization. The hydrogen-bonding between squaramide units  bias the molecular organization in both the polymorphs. 3D packing of H-bonded stacks of monomer lead to juxtaposition of  azide and alkyne units of adjacent molecules in a transition-state-like arrangement for their regiospecific cycloaddition reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!