Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinical translation is a challenging step in the development of cancer vaccines and is found to be related to the complex nature of cancer immunology. Vaccine-based therapeutic strategies for cancer have gained consideration with the advent of vaccine technology as well as an understanding of cancer immunology. Immunotherapy has been widely used in the treatment of cancer. Some promising candidates have been identified to engineer cancer vaccines like Glycoprotein, Mucin 1, MHC protein, etc. It has benefited from the availability of advanced techniques for rapid identification and selection of proteins for precision engineering. Simultaneously, nanovaccines have been focused on target delivery and artificial intelligence-based approaches for personalized vaccine development. The manuscript summarizes the advances in the development of structurebased cancer vaccines along with the status of clinical studies and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026623666221107160636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!