Background: Regulation of gene expression plays an essential role in controlling the phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable oil in the world, and the seed oil content is an important trait of B. napus.
Results: We perform a comprehensive analysis of the transcriptional variability in the seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF). We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs) for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them, the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene pairs are regulated by local eQTLs with the same open chromatin state and show a stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that there is a feedback regulation for the homoeologous gene pairs to maintain partial expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-localizes with a QTL for the seed oil content. To further resolve the regulatory network of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the mechanisms affecting the seed oil content regulated by hotspot87-88 and experimentally validate that the transcription factors, NAC13 and SCL31, positively regulate the seed oil content.
Conclusions: We comprehensively characterize the gene regulatory features in the seeds of B. napus and reveal the gene networks regulating the seed oil content of B. napus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639296 | PMC |
http://dx.doi.org/10.1186/s13059-022-02801-z | DOI Listing |
Plants (Basel)
January 2025
Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.
Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Landscape Architecture and Arts, Northwest Agriculture and Forestry University, Yangling 712100, China.
Tree peony seeds, traditionally used for edible oil production, are rich in α-linolenic acid (ALA). However, little attention is paid to their development as a healthcare food due to their bitter and astringent taste. The aim of this study was to optimize the debittering process of peony seeds on the basis of maintaining nutritional value and to identify the compounds that cause the taste of bitterness.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!