Achieving accurate and reliable maize disease identification in complex environments is a huge challenge. This is because disease images obtained from natural environments are often in complex contexts that may contain elements similar to disease characteristics or symptoms. Based on cascade network and two-stage transformation learning, the new method is proposed in this paper and applied the improved method to the task of identification and classification of four maize leaf types in a complex environment. The proposed method has a cascade structure which consists of a Faster R-CNN leaf detector (denoted as LS-RCNN) and a CNN disease classifier, named CENet(Complex Environment Network). The LS-RCNN detector with an attention mechanism was used to detect maize leaves from the image, and the CENet model further classified the leaf images detected in the first stage into four categories: Cercospora leaf spot, Common rust, Northern Leaf Blight, and Healthy, which allowed image features to be extracted more efficiently. The subsequent use of a two-stage transfer learning strategy to train CENet models of disease images in complex contexts allows for faster training of the models while ensuring accuracy. The experimental results show that the proposed method is used to identify four types of maize leaves with an F1-score of 99.70%, which is better than some popular CNN models and others' methods, and has a more obvious advantage in terms of training speed. The model proposed in this experiment has a positive significance for exploring other Crop variety identification and classification under complex backgrounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640684PMC
http://dx.doi.org/10.1038/s41598-022-23484-3DOI Listing

Publication Analysis

Top Keywords

maize disease
8
disease identification
8
complex environments
8
based cascade
8
two-stage transfer
8
transfer learning
8
disease images
8
complex contexts
8
identification classification
8
proposed method
8

Similar Publications

Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity.

View Article and Find Full Text PDF

Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review.

Ecotoxicology

January 2025

Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.

As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.

View Article and Find Full Text PDF

Maize seedlings in cold regions and high latitude often face abiotic stress. As a result, weak seedlings affect maize production, The commonly used seed coating agents in production are mainly to prevent biological stress of pests and diseases, and have little effect on seedling vigor and abiotic resistance. In this experiment, the combination of graphene oxide (GO) and seed coating agent can effectively prevent pests and diseases and increase the growth of seedlings.

View Article and Find Full Text PDF

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF

Fructose-Derived Glycation and Immune Function: Effects on Antigen Binding in Human IgG and Lymphocytes.

Arch Biochem Biophys

January 2025

Chemistry Department, University Of Dicle, Faculty of Science, 21280 Diyarbakır, Turkey. Electronic address:

Diabetes Mellitus (DM), one of the oldest known metabolic disorders, dates back to 3000 BC and continues to have a profound impact on health and the economy. Nutrition plays a critical role in managing diabetes and enhancing overall quality of life. It is also vital for immune system function, as well as in the prevention and treatment of aging-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!