Microbiological analysis and bioremediation bioassay for characterization of industrial effluent.

Sci Rep

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.

Published: November 2022

This study aims to investigate bacteria for biodegradation of oil pollutants from oily industrial wastewater to be used as bioremediation tools and to determine the characterization of bioremediation bioassays. A screening bioassay was carried out using six exogenous environmental bacterial strains to degrade oily pollution, which indicated promising clearance of the oily wastewater. Two strains, namely Enterobacter cloacae 279-56 (R4) and Pseudomonas otitis MCC10330 (R19), could successfully eliminate oil content and reasonable removal of the organic load. Results showed that the two promising bacterial candidates (R4 and R19) were selected according to the preliminary screening of the six tested bacteria considered the most efficient for all the tested parameters. The highest Removal Efficiency (Removal Efficiency resulted in Residual levels of total dissolved solids (TDS), biochemical oxygen demand, chemical oxygen demand, and Oil content in the treated oily wastewater effluents are 1940, 171, 131, and 84 mg/l respectively where these results are not within safe discharge limits, except for TDS. Hence, the bioremediation assays were carried out using the mixed culture since it was the most efficient strain for degrading all tested parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640613PMC
http://dx.doi.org/10.1038/s41598-022-23480-7DOI Listing

Publication Analysis

Top Keywords

oily wastewater
8
oil content
8
tested parameters
8
removal efficiency
8
oxygen demand
8
microbiological analysis
4
bioremediation
4
analysis bioremediation
4
bioremediation bioassay
4
bioassay characterization
4

Similar Publications

The treatment of oily wastewater and oil/water mixtures has received more and more attention. In this study, a Zn-MOF (ZIF-8) decorated polyimide (PI) nanofiber membrane with triple self-cleaning performance was constructed, and the decoration of ZIF-8 on the PI membrane improved the hydrophilicity of the composite membrane, which further enhanced the underwater oil resistance, and the mechanical properties of the membranes improved significantly with the increase of in situ growth time. In addition, the inherent photocatalytic and antibacterial properties of ZIF-8 endowed the membranes with fantastic performance.

View Article and Find Full Text PDF

Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.

View Article and Find Full Text PDF

Herein, a citrus processing wastewater-based biorefinery has been developed manufacturing essential oils, polyphenols and bacterial cellulose. Liquid-liquid extraction was evaluated for isolation of essential oils assessing different organic solvents, recovering 0.45 kg of essential oils per m of wastewater using n-heptane.

View Article and Find Full Text PDF

Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.

View Article and Find Full Text PDF

Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!