Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640571PMC
http://dx.doi.org/10.1038/s41526-022-00241-4DOI Listing

Publication Analysis

Top Keywords

microfluidic device
16
muscle strength
12
international space
12
space station
12
caenorhabditis elegans
8
flown international
8
decreased expression
8
hardware spaceflight
8
technical advances
8
muscle
5

Similar Publications

Bulk methods to fractionate organelles lack the resolution to capture single-cell heterogeneity. While microfluidic approaches attempt to fractionate organelles at the cellular level, they fail to map each organelle back to its cell of origin-crucial for multiomics applications. To address this, we developed VacTrap, a high-throughput microfluidic device for isolating and spatially indexing single nuclei from mammalian cells.

View Article and Find Full Text PDF

Automated electrochemical oxygen sensing using a 3D-printed microfluidic lab-on-a-chip system.

Lab Chip

January 2025

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.

Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).

View Article and Find Full Text PDF

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches.

J Pharm Anal

November 2024

BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.

To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes.

View Article and Find Full Text PDF

Monitoring platelet aggregation is crucial for predicting thrombotic diseases and identifying the risk of bleeding or resistance to antiplatelet drugs. This study developed a microfluidic device to measure platelet activation with high sensitivity. By controlling exposure time through repeated reinjections, the device enables the detection of subtle changes in platelet activity influenced by lifestyle factors, such as alcohol consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!