Developing low-cost, well-performing, and resource-efficient photocatalysts with enhanced solar light utilization can contribute to the practicability of photocatalytic techniques in organic wastewater treatment. This study fabricated and characterized a novel sunlight-driven BiOBr- and acetylene black (AB)-loaded monolithic photocatalyst. The fly ash-based geopolymer acts as photocatalyst support that can also provide adsorption sites and semiconductor metal oxide (FeO). A conductive network in the geopolymer structure formed by AB can promote the separation of e-h pairs generated by active sites (BiOBr and FeO). Moreover, the photothermal effect induced by AB can assist the photocatalytic reaction at the microinterface of the photocatalyst. This photocatalyst was suspended on the surface of an aqueous solution for sufficient contact with oxygen from the air and is thus beneficial for producing O and ·OH as the main active species. Within 30 min, it exhibited higher photothermal-photocatalytic activity with 96% removal efficiency of the target pollutant methylene blue (MB), which occurred at an initial concentration of 20 mg L. The demethylation and hydroxylation process induced by the active species constituted the primary degradation pathway for MB by Bi/AB/MFGP. Overall, this study provides a valuable reference for developing economical, effective, and practical photocatalysts and applying geopolymers in photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!