Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interferon-regulatory factor 5 (IRF5) participates in the regulation of apoptosis, affects the phenotype of inflammatory macrophages and plays an essential role in the inflammatory response. However, the role of IRF5 in the progression of amyotrophic lateral sclerosis (ALS) remains largely unknown. Here, we show that IRF5 mainly accumulated in the nucleus in cells expressing the truncated 25 k C-terminal fragments of TDP-43 (TDP-25, named TDP-25 cells hereafter). IRF5 knockdown using a lentivirus carrying an shRNA in TDP-25 cells exerted a protective effect and reduced the level of the apoptosis-related protein cleaved caspase-9 and the cell cycle arrest protein p21, while increasing the expression of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its target molecule glutamate-cysteine ligase modulatory subunit (GCLM). Furthermore, IRF5-knockdown cells showed improved mitochondrial swelling and cristae dilation. In addition, we found that IRF5 mediated neuronal injury partly through the negative regulation of TANK-binding kinase 1 (TBK1). These data indicate that the loss of IRF5 in TDP-25 cells exerts a protective effect mainly by inhibiting apoptosis, regulating cell cycle arrest and alleviating oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2022.148155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!