The genus Gracilaria is an economically important group of seaweeds as several species are utilized for various products such as agar, used in medicines, human diets, and poultry feed. Hence, it is imperative to understand their response to predicted ocean acidification conditions. In the present work, we have evaluated the response of Gracilaria foliifera and Gracilaria debilis to carbon dioxide (pCO) induced seawater acidification (pH 7.7) for two weeks in a controlled laboratory conditions. As a response variable, we have measured growth, productivity, redox state, primary and secondary metabolites, and mineral compositions. We found a general increase in the daily growth rate, primary productivity, and tissue chemical composition (such as pigments, soluble and insoluble sugars, amino acids, and fatty acids), but a decrease in the mineral contents under the acidified condition. Under acidification, there was a decrease in malondialdehyde. However, there were no significant changes in the total antioxidant capacity and a majority of enzymatic and non-enzymatic antioxidants, except for an increase in tocopherols, ascorbate and glutathione-s-transferase in G. foliifera. These results indicate that elevated pCO will benefit the growth of the studied species. No sign of oxidative stress markers indicating the acclimatory response of these seaweeds towards lowered pH conditions. Besides, we also found increased antimicrobial activities of acidified samples against several of the tested food pathogens. Based on these observations, we suggest that Gracilaria spp. will be benefitted from the predicted future acidified ocean.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114296DOI Listing

Publication Analysis

Top Keywords

primary productivity
8
redox state
8
gracilaria debilis
8
gracilaria foliifera
8
seawater acidification
8
gracilaria
6
evaluation growth
4
growth primary
4
productivity nutritional
4
nutritional composition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!