Thermal properties of municipal solid waste components and their relative significance for heat retention, conduction, and thermal diffusion in landfills.

J Environ Manage

Florida International University, Civil and Environmental Engineering Department, 10555 West Flagler Street, Engineering Center, Miami, FL, 33174, USA. Electronic address:

Published: January 2023

AI Article Synopsis

  • Significant heat generation occurs in landfills during the decomposition of food waste, impacting the thermal dynamics of municipal solid waste (MSW) components.
  • The study focuses on examining and comparing thermal properties such as thermal conductivity, diffusivity, and specific heat of MSW materials, liquids, and gases to understand temperature increases in gas and leachate.
  • Findings indicate that heat from decomposing waste primarily transfers to leachate, leading to warmer liquids and gases, while non-food waste materials exhibit slow temperature uniformity due to low thermal conductivities.

Article Abstract

Significant amounts of heat can be generated during the initial stages after wastes are deposited in landfills, primarily due to decomposition of food waste. Objectives of this study are to compile, examine and compare thermal properties of municipal solid waste (MSW) components, and liquid and gas phases in MSW landfills and their thermal responses that effect temperature increases in gas and leachate. Specific thermal properties examined include thermal conductivity, thermal diffusivity, and specific heat of waste materials deposited in landfills, liquids (water), and gases present. Compilation of these properties will allow in depth thermal analyses to evaluate heat transfer dynamics in landfills with different waste compositions. Examination of thermal characteristics of MSW components indicate that heat generated during decomposition of waste components would primarily be transferred to liquid (leachate) due to formation of water and gaseous components and their high specific heats. As a result, both the leachate and gases released from a landfill during the initial stages after wastes are deposited and when some oxygen is present as an electron acceptor will be warmer. Except for the metals and construction waste, it is likely that most waste components will have a significant temperature gradient during warming up and cooling off stages due to their low thermal conductivities and low thermal diffusivities. Even when the gas phase is at higher temperatures, it will take long time for waste materials (other than food waste and metals) to come to a uniform temperature during the heat generation (primarily due to decomposition of food waste) in a landfill.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.116651DOI Listing

Publication Analysis

Top Keywords

thermal properties
12
waste components
12
food waste
12
thermal
11
waste
11
properties municipal
8
municipal solid
8
solid waste
8
heat generated
8
initial stages
8

Similar Publications

Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

3D printing of continuous cotton thread reinforced poly (lactic acid).

Sci Rep

December 2024

Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.

This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!