A theory for sequence-dependent liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) in the study of biomolecular condensates is formulated by extending the random phase approximation (RPA) and field-theoretic simulation (FTS) of heteropolymers with spatially long-range Coulomb interactions to include the fundamental effects of short-range, hydrophobic-like interactions between amino acid residues. To this end, short-range effects are modeled by Yukawa interactions between multiple nonelectrostatic charges derived from an eigenvalue decomposition of pairwise residue-residue contact energies. Chain excluded volume is afforded by incompressibility constraints. A mean-field approximation leads to an effective Flory-Huggins χ parameter, which, in conjunction with RPA, accounts for the contact-interaction effects of amino acid composition and the sequence-pattern effects of long-range electrostatics in IDP LLPS, whereas FTS based on the formulation provides full sequence dependence for both short- and long-range interactions. This general approach is illustrated here by applications to variants of a natural IDP in the context of several different amino-acid interaction schemes as well as a set of different model hydrophobic-polar sequences sharing the same composition. Effectiveness of the methodology is verified by coarse-grained explicit-chain molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c06181 | DOI Listing |
Phys Rev Lett
December 2024
School of Physics, Peking University, Beijing 100871, China.
In recent years, energy correlators have emerged as a powerful tool to explore the field theoretic structure of strong interactions at particle colliders. In this Letter we initiate a novel study of the nonperturbative power corrections to the projected N-point energy correlators in the limit where the angle between the detectors is small. Using the light-ray operator product expansion as a guiding principle, we derive the power corrections in terms of two nonperturbative quantities describing the fragmentation of quarks and gluons.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Complex-Langevin field-theoretic simulations (CL-FTSs) provide an approximation-free method of calculating fluctuation corrections to the self-consistent field theory (SCFT) of block copolymer melts. However, the complex fields are prone to the formation of hot spots, which causes the method to fail. This problem has been attributed to an invariance under complex translations, which allows the system to drift away from the real-valued saddle-point of SCFT.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard-Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard-Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials.
View Article and Find Full Text PDFMacromolecules
November 2024
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Particle and field-theoretic simulations are both commonly used methods to study the equilibrium properties of polymeric materials. Yet despite the formal equivalence of the two methods, no comprehensive comparisons of particle and field-theoretic simulations exist in the literature. In this work, we seek to fill this gap by performing a systematic and quantitative comparison of particle and field-theoretic simulations.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Solution formulations involving polymers are the basis for a wide range of products spanning consumer care, therapeutics, lubricants, adhesives, and coatings. These multicomponent systems typically show rich self-assembly and phase behavior that are sensitive to even small changes in chemistry and composition. Longstanding computational efforts have sought techniques for predictive modeling of formulation structure and thermodynamics without experimental guidance, but the challenges of addressing the long time scales and large length scales of self-assembly while maintaining chemical specificity have thwarted the emergence of general approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!