A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light-Reconfiguring Inhomogeneous Soft Helical Pitch with Fatigue Resistance and Reversibility. | LitMetric

Light-Reconfiguring Inhomogeneous Soft Helical Pitch with Fatigue Resistance and Reversibility.

J Am Chem Soc

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: November 2022

AI Article Synopsis

  • Researchers are tackling the challenge of actively controlling various optical properties like wavelength and polarization in real time, which has been difficult due to the lack of suitable materials.
  • They introduce a novel photo-modulated soft helix with a unique structure that enables reversible changes in pitch length based on light intensity, adding an extra degree of control over its optical properties.
  • This innovation paves the way for better manipulation of absorbance and chirality, potentially enhancing applications in fields such as biophotonics and creating advanced optical devices with improved performance.

Article Abstract

Active engineering and modulation of optical spectra in a remote and fully reversible light is urgently desired in photonics, chemistry, and materials. However, the real-time regulation of multiple optical information such as wavelength, bandwidth, reflectance, and polarization is still a longstanding issue due to the lack of an appropriate photoresponsive candidate. Herein, we propose an additional "degree-of-freedom (DOF)" in a photo-modulated soft helix, and build up an unprecedented inhomogeneous helical pitch length with light-reconfiguring property, fatigue resistance, and reversibility. For the working model, the intrinsic chiral photoswitch is employed as an actuator to modulate the helical pitch length, which is proportional to the irradiation intensity, and the unique broadband absorbance photo-modulator is incorporated as an attenuator of the transmitted light to decrease its intensity along the sample thickness, therefore successfully adding another controlled DOF on the pitch length distribution (i.e., homogeneous or inhomogeneous) apart from the common soft helix with only a single DOF on the pitch length. The absorbance photo-modulator with a unique variable broadband absorption enables the light to reconfigure the helical pitch from homogeneous to inhomogeneous, thereby achieving the robust fatigue-resistance establishment of reversible spectral programming. The established light-reconfigurable inhomogeneous helical pitch with the photoresponsive modulator can provide a breakthrough to control absorbance and chirality, especially for dynamically broadening and narrowing the bandwidth on demand, and further enable the ever-desired broadband NIR circularly polarized luminescence (CPL) with a high dissymmetry factor of up to 1.88. The cutting-edge photoswitchable inhomogeneous soft helical pitch provides access to multi-freedom control in soft materials, optics, biophotonics, and other relevant fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c08505DOI Listing

Publication Analysis

Top Keywords

helical pitch
24
pitch length
16
inhomogeneous soft
8
soft helical
8
pitch
8
fatigue resistance
8
resistance reversibility
8
soft helix
8
inhomogeneous helical
8
absorbance photo-modulator
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!