Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cycloarenes and heterocycloarenes display unique physical structures and hold great potential as organic semiconductors. However, the synthesis of (hetero)cycloarenes remains a big challenge, and there are limited reports on their applications. Herein, a series of nitrogen- and sulfur-codoped cycloarenes ( = 2, 3, 4) with branched alkyl substituents containing linear spacer groups from C to C have been conveniently synthesized. Compared with their isoelectronic analogues and , both having a saddle-shaped configuration, the coincorporation of two nitrogen atoms and two sulfur atoms leads to a fully coplanar aromatic backbone structure. Each of these three planar heterocycloarenes acts as a supramolecular host for encapsulation of both fullerenes C and C with a stronger donor-acceptor interaction for the complexation between the heterocycloarene and C due to the unique molecular geometry and defined cavity. Meanwhile, the electron-rich nitrogen atoms also slightly increase the energies of both highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in this series of planar heterocycloarenes, indicating that they can be used as p-type semiconductors. Most importantly, benefitting from the planar π-conjugated backbone structure accompanied by excellent crystallinity and ordered molecular packing, as well as upon the engineering of the alkyl chain branching position, thin-film field-effect transistors of with moderate alkyl branching point exhibit the maximum hole mobility of 0.86 cm V s, which is the highest for (hetero)cycloarene-based organic semiconductors. This study will shed new light on designing novel high-performance macrocyclic polycyclic aromatic hydrocarbon (PAH) semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c08276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!