Postmortem (PM) magnetic resonance imaging (MRI) can serve as a bridge between in vivo imaging and histology by connecting MRI observed macrostructural findings to histological staining and microstructural changes. Data were acquired from 20 formalin-fixed brains including T2, T1, PD, and T2*-weighted images of left hemispheres and 6-mm-thick coronal slices. Tissue slices were bisected, aligned to MR images and used to guide histological sampling. Markers of myelin and oligodendroglia alterations were semiquantitatively rated and compared within white matter hyperintensities (WMHs) and normal-appearing white matter. Tissue priors were created from 3T in vivo data and used to guide segmentation of WMH. PM WMH and hemisphere volumes were compared to volumes derived from in vivo data. PM T2 WMH and T1 hemisphere volumes were correlated with in vivo 3T FLAIR WMH and T1 hemisphere volumes. WMH showed significant myelin loss, decreased GFAP expression and increased vimentin expression. MR-visible perivascular spaces and cortical microvascular lesions were successfully captured on histopathological sections. PM MRI can quantify cerebrovascular disease burden and guide tissue sampling, allowing for more comprehensive characterization of cerebrovascular disease that may be used to study etiologies of age-related cognitive change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764082PMC
http://dx.doi.org/10.1093/jnen/nlac103DOI Listing

Publication Analysis

Top Keywords

cerebrovascular disease
12
wmh hemisphere
12
hemisphere volumes
12
white matter
8
vivo data
8
wmh
5
postmortem mri
4
mri guided
4
guided histopathology
4
histopathology evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!