Motivation: Antimicrobial peptides (AMPs) are essential components of therapeutic peptides for innate immunity. Researchers have developed several computational methods to predict the potential AMPs from many candidate peptides. With the development of artificial intelligent techniques, the protein structures can be accurately predicted, which are useful for protein sequence and function analysis. Unfortunately, the predicted peptide structure information has not been applied to the field of AMP prediction so as to improve the predictive performance.
Results: In this study, we proposed a computational predictor called sAMPpred-GAT for AMP identification. To the best of our knowledge, sAMPpred-GAT is the first approach based on the predicted peptide structures for AMP prediction. The sAMPpred-GAT predictor constructs the graphs based on the predicted peptide structures, sequence information and evolutionary information. The Graph Attention Network (GAT) is then performed on the graphs to learn the discriminative features. Finally, the full connection networks are utilized as the output module to predict whether the peptides are AMP or not. Experimental results show that sAMPpred-GAT outperforms the other state-of-the-art methods in terms of AUC, and achieves better or highly comparable performance in terms of the other metrics on the eight independent test datasets, demonstrating that the predicted peptide structure information is important for AMP prediction.
Availability And Implementation: A user-friendly webserver of sAMPpred-GAT can be accessed at http://bliulab.net/sAMPpred-GAT and the source code is available at https://github.com/HongWuL/sAMPpred-GAT/.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805557 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btac715 | DOI Listing |
Sci Rep
January 2025
Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
Recurrent miscarriage (RM) is a reproductive disorder affecting couples worldwide. The underlying molecular mechanisms remain elusive, even though emerging evidence has implicated endoplasmic reticulum stress (ERS). We investigated RM- and ERS-related genes to develop a diagnostic model that can enhance predictive ability.
View Article and Find Full Text PDFHeart
January 2025
Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
Background: Heart failure (HF) guidelines recommend routine testing for iron deficiency (ID) and, for those with ID, intravenous iron if the left ventricular ejection fraction is <50%. Guideline adherence to these recommendations by cardiologists in China is unknown.
Methods And Results: An independent academic web-based survey was designed and distributed via social networks to cardiologists across China.
Anal Chim Acta
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:
Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.
View Article and Find Full Text PDFToxicon
January 2025
Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!