Electrocatalytic hydrogenation of furfural on metal surfaces has become an important research subject due to the potential of the reaction product 2-methylfuran as a renewable energy resource. Identifying effective determinants in this reaction process requires a thorough investigation of the complex electrode-electrolyte interactions, which considers a variety of the influential components. In this work, in operando electrochemical Raman Spectroscopy and Molecular Dynamics simulations were utilized to investigate different characteristics of the interface layer in the electrocatalytic hydrogenation of furfural. Hereby, the influence of applied potentials, electrode material, and electrolyte composition were investigated in detail. The studied parameters give an insight into furfural's binding situation, molecular orientation, and reaction mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202200614 | DOI Listing |
Small
January 2025
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.
View Article and Find Full Text PDFSmall
January 2025
School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China.
The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.
View Article and Find Full Text PDFNat Commun
January 2025
i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
Transition-metal carbides have been advocated as the promising alternatives to noble-metal platinum-based catalysts in electrocatalytic hydrogen evolution reaction over half a century. However, the effectiveness of transition-metal carbides catalyzing hydrogen evolution in high-pH electrolyte is severely compromised due to the lowered proton activity and intractable alkaline-leaching issue of transition-metal centers. Herein, on the basis of validation of molybdenum-carbide model-catalyst system by taking advantage of surface science techniques, MoC micro-size spheres terminated by Al doped MoO layer exhibit a notable performance of alkaline hydrogen evolution with a near-zero onset-potential, a low overpotential (40 mV) at a typical current density of 10 mA/cm, and a small Tafel slope (45 mV/dec), as well as a long-term stability for continuous hydrogen production over 200 h.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China.
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active NiP into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@NiP/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a NiP/CoP shell.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
Electrocatalytic nitrate reduction reaction (NORR) to harmless nitrogen (N) presents a viable approach for purifying NO-contaminated wastewater, yet most current electrocatalysts predominantly produce ammonium/ammonia (NH/NH) due to challenges in facilitating N-N coupling. This study focuses on identifying metal catalysts that preferentially generate N and elucidating the mechanistic origins of their high selectivity. Our evaluation of 16 commercially available metals reveals that only Pb, Sn, and In demonstrated substantial N selectivity (79.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!