The aim of this study was to explore the use of hyperbaric oxygen to enhance the radiosensitivity of human glioma cells. Sub-cultured U251 human glioma cells were randomly divided into four groups: an untreated control group, cells treated with hyperbaric oxygen (HBO) only, cells treated with X-ray irradiation (X-ray) only, and cells treated with both HBO and X-ray. Cell morphology, cell proliferation activity, cell cycle distribution, and apoptosis were observed in these groups to evaluate the role of HBO in improving the radiosensitivity of glioma cells. With the increase in X-ray doses (0 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy), the survival fraction (SF) of glioma cells gradually decreased. Significantly lower SF was observed for the cells treated with the HBO and X-ray together than in the X-ray group for each dose (all P < 0.05). The proliferation inhibition was significantly higher in the HBO combined with X-ray group than in the X-ray group for each dose (all P < 0.05) for the U251 cell line. The percentage of G2/M phase cells was significantly higher in the HBO combined with X-ray (2 Gy) group (26.70% ± 2.46%) and the HBO group (22.36% ± 0.91%) than in the control group (11.56% ± 2.01%) and X-ray (2 Gy) group (10.35% ± 2.69%) (all P < 0.05). U251 cell apoptosis was significantly higher in the HBO combined with X-ray (2 Gy) group than in the HBO group, the X-ray (2 Gy) group, and the control group (all P < 0.05). We conclude that HBO can enhance the proliferation inhibition and apoptosis of glioma U251 cells by blocking glioma cells in the G2/M phase and improve the radiosensitivity of U251 glioma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62769 | DOI Listing |
JCI Insight
January 2025
Centre for Cancer Research, Hudson Institute of Medical Research, and.
Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China.
NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.
View Article and Find Full Text PDFExpert Rev Mol Med
January 2025
Centre for Gene Therapy and Regenerative Medicine, King's College London, London, United Kingdom.
Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!