DJ-1 regulates mitochondrial gene expression during ischemia and reperfusion.

Free Radic Biol Med

Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV-Instituto de Salud Carlos III, Madrid, Spain; UAB-Chair Cardiovascular Research, Barcelona, Spain. Electronic address:

Published: November 2022

The early-onset Parkinson's disease protein DJ-1 is a multifunctional protein that plays a protective role against ischemia and reperfusion (I/R) injury and oxidative stress. Despite lacking a canonical RNA-binding domain DJ-1 exhibits RNA-binding activity and multiple transcripts have been identified. However, no functional characterization has been provided to date. Here, we have investigated the DJ-1-interacting transcripts, as well as the role of DJ-1 RNA-binding activity during ischemia and reperfusion. Among the identified DJ-1-interacting transcripts, we have distinguished a significant enrichment of mRNAs encoding mitochondrial proteins. The effects of DJ-1 depletion on mitochondrial protein expression and mitochondrial morphology were investigated using a CRISPR/Cas9 generated DJ-1 knockout (DJ-1) cell model. DJ-1 depletion resulted in increased MTND2 protein expression in resting cells; however, after exposure to I/R, MTND2 levels were significantly reduced with respect to wild type cells. Increased mitochondrial fission was consistently found in DJ-1 cells after I/R exposure. MTND2 transcript binding to DJ-1 was increased during ischemia. Our results indicate that the RNA-binding activity of DJ-1 shield mitochondrial transcripts from oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.315DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
12
rna-binding activity
12
dj-1
11
dj-1-interacting transcripts
8
dj-1 depletion
8
protein expression
8
mitochondrial
6
dj-1 regulates
4
regulates mitochondrial
4
mitochondrial gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!