Photoredox-based late-stage functionalization in SAR study for in vivo potent glucosylceramide synthase inhibitor.

Bioorg Med Chem Lett

Research, Takeda Pharmaceutical Company Limited: 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan. Electronic address:

Published: December 2022

AI Article Synopsis

  • Glucosylceramide synthase (GCS) is a key protein involved in Parkinson's Disease and Gaucher's Disease, making it an important target for drug development.
  • Recent research identified new GCS inhibitors, T-036 and its analogue 2a, and sought to enhance their effectiveness through structure-activity relationship (SAR) studies.
  • By utilizing a photoredox reaction, researchers successfully modified the chemical structure of 2a, leading to the discovery of more potent inhibitors, 2b and 2g, with 2b showing better effects in living organisms than the earlier lead compound, T-036.

Article Abstract

Glucosylceramide synthase (GCS) has drawn much attention as an attractive protein target in the disease pathways of Parkinson's Disease (PD) and lysosomal storage disorders, such as Gaucher's Disease (GD). In previous our study, T-036 and its analogue, 2a, were discovered as novel GCS inhibitors. To further improve activity of this chemical series, SAR was investigated on the fused pyridyl ring core of 2a by employing a photoredox reaction that significantly reduced synthetic demand. Herein, we successfully applied the decarboxylation C-H alkylation photoredox reaction to introduce a wide variety of substituents at the 6-position of the fused pyridine core scaffold. This quick SAR acquisition facilitated the swift identification of the potent GCS inhibitors 2b (IC = 5.9 nM) and 2g (IC = 3.6 nM). Moreover, 2b exhibited superior in vivo potency to that of our previously reported lead compound, T-036.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2022.129039DOI Listing

Publication Analysis

Top Keywords

glucosylceramide synthase
8
gcs inhibitors
8
photoredox reaction
8
photoredox-based late-stage
4
late-stage functionalization
4
functionalization sar
4
sar study
4
study vivo
4
vivo potent
4
potent glucosylceramide
4

Similar Publications

Inhibiting UGCG prevents PRV infection by decreasing lysosome-associated autophage.

Int J Biol Macromol

December 2024

School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China. Electronic address:

Glucosylceramide synthase (UGCG) is a key enzyme that catalyzes the initial glycosylation step in the biosynthesis of glycosphingolipids (GSLs) derived from glucosylceramide. UGCG is closely associated with various cellular processes, including the cell cycle, angiogenesis, multidrug resistance, and pathogen invasion. In this study, a short hairpin RNA (shRNA) library designed to target key genes involved in the sphingolipid metabolic pathway was utilized to elucidate their roles in Pseudorabies Virus (PRV).

View Article and Find Full Text PDF

Design, synthesis and antifungal activity of novel vanillin derivatives containing thiazole and acylhydrazone moieties.

Pest Manag Sci

December 2024

Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Institute of Pesticide Science, Northwest A&F University, Yangling, P. R. China.

Background: The potential application of vanillin as a fungicide has garnered significant attention in the agricultural product market and food industries. Consequently, a novel series of vanillin derivatives containing thiazole and hydrazone fragments were strategically designed, synthesized, and evaluated for their antifungal activity against six representative plant phytopathogenic fungi.

Results: In the in vitro antifungal assay, some title vanillin derivatives showed good antifungal activity against Botrytis cinerea, Fusarium solani, and Magnaporthe grisea.

View Article and Find Full Text PDF

Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain.

J Pharmacol Sci

December 2024

Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan. Electronic address:

Article Synopsis
  • - Gangliosides are important for functions in nerve cells, influencing processes like growth, communication, and degeneration.
  • - Research indicated that mice given gangliosides made from glucosylceramide experienced heightened sensitivity to touch, known as mechanical allodynia.
  • - The study found that using glucosylceramide inhibitors helped decrease this sensitivity during inflammation in mice, highlighting the potential of targeting gangliosides for pain relief.
View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear.

View Article and Find Full Text PDF

Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!