Chronic infected wound healing is a critical challenge in clinical practice owing to the involvement of multiple physiological processes, including bacteria-related, inflammatory regulation and angiogenesis. Therefore, a multi-functional strategy with synergistic anti-bacterial, anti-inflammatory and pro-angiogenic effects should be developed. Owing to their biomimetic structural features and controlled delivery of active agents, electrospun nanofilms are promising biomaterials for the treatment of skin defects. In this study, we fabricated multi-functional nanofilms with pro-angiogenic, anti-bacterial and anti-inflammatory capacities. First, strontium (Sr) ions were incorporated into poly(L-lactic-co-caprolactone) (PLCL) nanofilms. Subsequently, polydopamine (PDA) and zinc oxide (ZnO) were decorated onto the surface of Sr-loaded PLCL nanofilms to prepare ZnO/PDA@PLCL@Sr nanofilms. In vitro results showed that ZnO/PDA@PLCL@Sr nanofilms were biocompatible, exhibited angiogenic activity and significantly inhibited the growth of Staphylococcus aureus and Escherichia coli upon near-infrared -light irradiation. Furthermore, ZnO/PDA@PLCL@Sr nanofilms were found to drive the transformation of macrophages into the M2 phenotype. In vivo results further validated that ZnO/PDA@PLCL@Sr nanofilms exhibited pro-angiogenic and anti-bacterial activities and regulated inflammation to accelerate wound -healing in a rat model of bacteria-infected skin defects. In conclusion, we successfully developed a multi-functional biomaterial with pro-angiogenic, anti-bacterial and anti-inflammatory capacities to treat chronic infected wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2022.213154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!