All-solid-state Li metal batteries (ASSLBs) are currently regarded as one of the most promising next-generation energy storage technologies because of their great potential in realizing both high energy density and safety. However, the development of high performance ASSLBs is still restricted by the large interfacial resistance and Li dendrite propagation within solid electrolytes. Herein, a simple and efficient interfacial modification strategy is proposed to improve the interfacial contact between Li and LiLaZrTaO (LLZTO) by introducing a uniform and thin LiSe buffer layer. The LiSe buffer layer formed by an in situ conversion reaction can not only enhance the wettability of lithium metal toward LLZTO electrolyte but also facilitate uniform lithium plating/stripping. As a result, the interfacial resistance of Li/LLZTO decreased from 270.5 to 5.1 Ω cm, and the lithium symmetric cell can cycle stably for 350 h at a current density of 0.5 mA cm. Meanwhile, the Li|LLZTO-LiSe|LiNiCoMnO full cells exhibit a high initial capacity of 162.3 mAh g and good cycling stability with a capacity retention of 84.3% after 100 cycles at 0.2 C. These results prove the effectiveness of this modification method and provide new design strategies for the development of high performance ASSLBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c09729 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFSmall
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.
Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China.
The solid electrolyte interphase (SEI) is considered to be the key to the performance of lithium metal batteries (LMBs). The analysis of the SEI and cathode electrolyte interphase (CEI) composition (especially F 1s spectra) by X-ray photoelectron spectroscopy (XPS) has become a consensus among researchers. However, the surface-sensitive XPS characterization is susceptible to LiF artifacts due to several factors, leading to the overexaggerated role of LiF in the analysis of the SEI and CEI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!