Background: Polycystic ovary syndrome (PCOS), a common endocrine disorder affecting 5%-10% of reproductive age women worldwide, associated with various metabolic morbidities. One potential molecular mechanism could be epigenetic modifications, such as deoxyribonucleic acid (DNA) methylation.

Aims: The aim is to determine the association of global DNA methylation in peripheral blood leucocyte (PBL) cells and PCOS women. Also to assess abnormal lipid profile, insulin resistance, gonadotropins and reproductive markers in them.

Settings And Design: The study design involves a hospital-based prospective case-control study.

Materials And Methods: Fifty women with PCOS, diagnosed as per Rotterdam criteria and the rest 50 without PCOS or any disease, attending outpatient department were recruited. Serum biochemical markers and Global DNA methylation assay were done by using standardised kit.

Statistical Analysis Used: Data were compared using Independent -test or Mann-Whitney test using IBM SPSS version 26.0. < 0.05 was considered statistically significant.

Results: Majority, 72% of PCOS and 82% non-PCOS women were between 20 and 25 years. Most common presenting symptom was menstrual irregularity. Women with PCOS have high serum cholesterol and triglyceride level, elevated serum luteinising hormone (LH), follicle-stimulating hormone (FSH), LH/FSH ratio and testosterone but low estradiol levels as compared to non-PCOS. Statistically significant high mean Global DNA methylation percentage was found in PBLs of women with PCOS.

Conclusion: Despite study limitations, this study provided insight into Global DNA methylation in PBLs was associated with PCOS. It requires further research to better understand the influence of epigenetic factors including genome-wide DNA methylation profiling in PCOS development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635373PMC
http://dx.doi.org/10.4103/jhrs.jhrs_64_22DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
global dna
16
association global
8
deoxyribonucleic acid
8
polycystic ovary
8
ovary syndrome
8
pcos
8
women pcos
8
women
7
methylation
6

Similar Publications

This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.

View Article and Find Full Text PDF

The safety of titanium dioxide (TiO), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure.

View Article and Find Full Text PDF

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

species are known to produce various secondary metabolites with polyketide structures, including Monacolins, pigments, and citrinin. This study investigates the effects of 5-azacytidine on M1 and RP2. The dry weight, red, yellow, and orange pigment values, and Monacolin K yield of both strains were measured, and their hyphae observed through electron microscopy.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!