Ataxia-telangiectasia (A-T) is a severe syndromic neurodegenerative inborn error of immunity characterized by DNA reparation defect, chromosomal instability, and hypersensitivity to ionizing radiation, thereby predisposing affected individuals to malignant transformation. While the leading disease symptomatology is associated with progressively debilitating cerebellar ataxia accompanied by central and peripheral nervous system dysfunctions, A-T is a multisystemic disorder manifesting with the heterogeneity of phenotypic features. These include airway and interstitial lung disease, chronic liver disease, endocrine abnormalities, and cutaneous and deep-organ granulomatosis. The impaired thymic T cell production, defective B cell development and antibody production, as well as bone marrow failure, contribute to a combined immunodeficiency predisposing to infectious complications, immune dysregulation, and organ-specific immunopathology, with the A-T hyper-IgM (HIGM) phenotype determining the more severe disease course. This study aimed to clarify the immunodeficiency and associated immune dysregulation as well as organ-specific immunopathology in children with A-T. We also sought to determine whether the hyper-IgM and non-hyper-IgM phenotypes play a discriminatory role and have prognostic significance in anticipating the clinical course and outcome of the disease. We retrospectively reviewed the medical records of twelve A-T patients, aged from two to eighteen years. The patients' infectious history, organ-specific symptomatology, and immunological workup including serum alpha-fetoprotein, immunoglobulin isotypes, IgG subclasses, and lymphocyte compartments were examined. For further comparative analysis, all the subjects were divided into two groups, HIGM A-T and non-HIGM A-T. The clinical evaluation of the study group showed that recurrent respiratory tract infections due to viral and bacterial pathogens and a chronic obstructive airway disease along with impaired humoral immunity, in particular complete IgA deficiency, were noted in all the A-T patients, with both HIGM and non-HIGM phenotypes. The most important features with the discriminatory role between groups, were autoimmune disorders, observable four times more frequently in HIGM than in non-HIGM A-T. Two patients with the HIGM A-T phenotype were deceased due to liver failure and chronic Epstein-Barr virus (EBV) infection. It may therefore be assumed that the HIGM form of A-T is associated with more profound T cell dysfunction, defective immunoglobulin class switching, chronic EBV expansion, and poorer prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631935 | PMC |
http://dx.doi.org/10.3389/fped.2022.972952 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Breast, Haining Maternity and Child Health Care Hospital, Haining, Zhejieng, China.
Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.
View Article and Find Full Text PDFSci Immunol
January 2025
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.
View Article and Find Full Text PDFCurr Gastroenterol Rep
December 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.
Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.
Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.
Cell Biol Toxicol
January 2025
Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.
View Article and Find Full Text PDFCells
January 2025
Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the association between endometriosis and altered immune states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!