The blood-brain barrier (BBB) is a kind of filter, highly selective in relation to various types of substances. The BBB supports the immune status of the brain and is an important regulator of neuroimmune interactions. Some of the molecular and cellular features of the BBB, as well as the five main pathways of neuroimmune communication mediated by the BBB, are analyzed in this article. The functions of the BBB in neuroimmune interactions in various diseases are discussed: multiple sclerosis and Alzheimer's and Parkinson's diseases. The latest data on BBB dysfunction in COVID-19 coronavirus infection caused by the SARS-CoV-2 virus are considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628516PMC
http://dx.doi.org/10.1134/S1019331622050100DOI Listing

Publication Analysis

Top Keywords

neuroimmune interactions
12
blood-brain barrier
8
bbb
6
neuroimmune
4
barrier neuroimmune
4
interactions pathological
4
pathological processes
4
processes blood-brain
4
barrier bbb
4
bbb kind
4

Similar Publications

The immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes.

Brain Behav Immun Health

February 2025

Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Argentina.

Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose. Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease.

View Article and Find Full Text PDF

Introduction Chronic stress is a major burden in our society and increases the risk for various somatic and mental diseases, in part via promoting chronic low-grade inflammation. Interestingly, the vulnerability for chronic stress during adulthood varies widely among individuals, with some being more resilient than others. For instance, women, relative to men, are at higher risk for developing typical stress-related diseases, including depression and post-traumatic stress disorder (PTSD).

View Article and Find Full Text PDF

Neurogenic inflammation and itch in barrier tissues.

Semin Immunol

January 2025

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Once regarded as distinct systems, the nervous system and the immune system are now recognized for their complex interactions within the barrier tissues. The neuroimmune circuitry comprises a dual-network system that detects external and internal disturbances, providing critical information to tailor a context-specific response to various threats to tissue integrity, such as wounding or exposure to noxious and harmful stimuli like pathogens, toxins, or allergens. Using the skin as an example of a barrier tissue with the polarized sensory neuronal responses of itch and pain, we explore the molecular pathways driving neuronal activation and the effects of this activation on the immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!