Fuel cell performance tests for automotive applications include static and dynamic tests, and the dynamic load test is typically carried out to investigate the cell operating performance related to driving behavior in the particular use of fuel cell electric vehicles. The automatic hydrogen flow controller, utilized to regulate the hydrogen flow as a function of time, is one of the imperative apparatuses applied for the dynamic test. The driving behavior generally consists of rapid load fluctuations, several loads running at idle, full power, overload circumstances, start-stop repeats, and cold starting, and these dynamic variations are directly related to the power required for propelling a vehicle and the demand for hydrogen volume fluctuation throughout time. The desired automatic hydrogen flow controller was designed and manufactured for the dynamic performance test via the driving simulation protocol of a heavy-duty vehicle. The main experimental activities were performed to observe the responsibility and accuracy of the invented controller. The relation between the reliability of using the automatic hydrogen flow controller and the performance improvement of fuel cell operation was studied to gain ideas for further fuel cell modification. The hydrogen flow rates controlled by the created flow controller presented a data tolerance of approximately 0.84% which was not significantly different from the theoretical figure based on T-test analysis. The controller reacted to variations in flow rates in as little as 1-2 s, which was acceptable for the dynamic test. Regarding the performance enhancement, this automatic hydrogen flow controller assisted a single cell to generate 16% more power and 33% more energy at 45 mA as a minimum current demand in comparison with the results obtained from a test system using a traditional hydrogen controller with a constant flow rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631412PMC
http://dx.doi.org/10.1021/acsomega.2c02000DOI Listing

Publication Analysis

Top Keywords

hydrogen flow
28
flow controller
24
fuel cell
20
automatic hydrogen
16
driving behavior
12
hydrogen
10
controller
9
flow
9
cell performance
8
performance test
8

Similar Publications

Heteroatom Introduction and Electrochemical Reconstruction on Heterostructured Co-Based Electrocatalysts for Hydrogenation of Quinolines.

Small

March 2025

Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Electrocatalytic hydrogenation (ECH) of quinoline provides an eco-friendly and prospective route to achieve the highly value-added generation of 1,2,3,4-tetrahydroquinoline (THQ). Co element has been proven to be the efficient catalytic site for ECH of quinoline, but the rational regulation of the electronic structure of active Co site to improve the activity is still a challenge. Herein, the hierarchical core-shell structure consisting of NiCo-MOF nanosheets encapsulated Cu(OH) nanorods (Cu(OH)@CoNi-MOF) is constructed.

View Article and Find Full Text PDF

A two-dimensional solid-fuel combustion experiment for fire-resistant polymers under forced convective cross-flow was developed to assess burn characteristics and toxicant formation using advanced laser absorption diagnostics that enable in situ species and temperature measurements near the fuel surface. The method was used to examine the thermochemical flow-field structure near the surface of polytetrafluoroethylene (PTFE) exposed to a well-defined solid-fuel pilot flame burning polymethyl methacrylate (PMMA). Infrared diode and quantum cascade lasers were used to probe rovibrational absorption transitions of hydrogen fluoride (HF) and carbon monoxide (CO), respectively, at the exit plane of a heterogeneous cylindrical fuel grain from which temperature and mole fraction could be inferred.

View Article and Find Full Text PDF

Selective Transformation of Biomass and the Derivatives for Aryl Compounds and Hydrogen via Visible-Light-Induced Radicals.

Acc Chem Res

March 2025

Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China.

ConspectusFor sustainable development, exploring renewable resources is an urgent priority. Nonfood biomass, one of the largest renewable resources on Earth, primarily comprises three key components: lignin (ca. 15-30%), cellulose (ca.

View Article and Find Full Text PDF

Chemical Looping CH Reforming Through Isothermal Two-Step Redox Cycling of SrFeO Oxygen Carrier in a Tubular Solar Reactor.

Molecules

February 2025

CNRS, Processes, Materials and Solar Energy Laboratory (PROMES-CNRS), 7 Rue du Four Solaire, 66120 Font-Romeu, France.

The chemical looping reforming of methane using an SrFeO oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to producing syngas. The two-step isothermal process encompassed partial perovskite reduction with methane (partial oxidation of CH) and exothermic oxidation of SrFeO with CO or HO splitting under the same operating temperature.

View Article and Find Full Text PDF

Dynamic reactive synthesis of bio-based compatibilizer via diepoxide monomers grafting polylactic acid and reactive compatibilization of incompatible polylactic acid/bamboo powder composites.

Int J Biol Macromol

March 2025

School of Chemistry and Chemical Engineering Hainan University, Haikou 570228, Hainan Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China. Electronic address:

The synthesis of monomers with two epoxy structures (EIA) was successfully achieved by adopting holo-biobased feedstocks and in situ solvolysis reaction. The molecular structure of EIA was subjected to characterization through the use of infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance hydrogen spectroscopy (H NMR). The EIA was employed as the epoxy monomers for the synthesis of the grafted compatibilizer, resulting in the successful preparation of a fully bio-based and high epoxy value grafted compatibilizer (PLA-g-EIA (PLE)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!