The development of novel methods of producing transparent electrodes is important because of their ever-evolving applications and thus the additional parameters they must meet. In this work, we present a method of manufacturing semitransparent silver electrodes. This technique involves cracking the polyvinylpyrrolidone layer in the presence of a colloidal nanodispersion of zinc oxide. The resulting cracked polymer layer serves as the disposable mask for metal deposition. The whole procedure is valuable due to the fast and easy step of cracks formation caused by the elevated temperature and reduced pressure. The obtained electrodes have high transparency (82.4%) in a wide spectral range, which is only limited by the transparency of the applied substrate, and low resistivity (27.3 × 10 Ωm). The presence of unique patterns suggests new ideas for the applications of such electrodes, such as coding, security, and antiplagiarism protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631720PMC
http://dx.doi.org/10.1021/acsomega.2c05131DOI Listing

Publication Analysis

Top Keywords

electrodes
5
crack-templated wire-like
4
wire-like semitransparent
4
semitransparent electrodes
4
electrodes unique
4
unique irregular
4
irregular patterns
4
patterns development
4
development novel
4
novel methods
4

Similar Publications

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

Background: Cochlear implants (CI) with off-the-ear (OTE) and behind-the-ear (BTE) speech processors differ in user experience and audiological performance, impacting speech perception, comfort, and satisfaction.

Objectives: This systematic review explores audiological outcomes (speech perception in quiet and noise) and non-audiological factors (device handling, comfort, cosmetics, overall satisfaction) of OTE and BTE speech processors in CI recipients.

Methods: We conducted a systematic review following PRISMA-S guidelines, examining Medline, Embase, Cochrane Library, Scopus, and ProQuest Dissertations and Theses.

View Article and Find Full Text PDF

The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!