We present high-resolution magnetic resonance imaging (MRI) at ultra-low field (ULF) with a proton Larmor frequency of around 120 kHz. The key element is a specially designed high-sensitivity sensing coil in the shape of a solenoid with a few millimeter gap between windings to decrease the proximity effect and, hence, increase the coil's quality ( ) factor and sensitivity. External noise is strongly suppressed by enclosing the sensing coil in a copper cylindrical shield, large enough not to negatively affect the coil's factor and sensitivity, measured to be 217 and 0.47 fT/Hz , respectively. To enhance small polarization of proton spins at ULF, a strong pulsed 0.1 T prepolarization field is applied, making the signal-to-noise ratio (SNR) of ULF MRI sufficient for high-quality imaging in a short time. We demonstrate ULF MRI of a copper sulfate solution phantom with a resolution of and SNR of 10. The acquisition time is 6.3 min without averaging. The sensing coil size in the current realization can accommodate imaging objects of 9 cm in size, sufficient for hand, and it can be further increased for human head imaging in the future. Since the in-plane resolution of is typical in anatomical medical imaging, this ULF MRI method can be an alternative low-cost, rapid, portable method for anatomical medical imaging of the human body or animals. This ULF MRI method can supplement other MRI methods, especially when such methods are restricted due to high cost, portability requirement, imaging artifacts, and other factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633096 | PMC |
http://dx.doi.org/10.1063/5.0123692 | DOI Listing |
ACS Appl Nano Mater
December 2024
Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The AC magnetic field response of the superparamagnetic nano-ferrofluid is an interplay between the Neel and Brownian relaxation processes and is generally quantified via the susceptibility measurements at high frequencies. The high frequency limit is dictated by these relaxation times which need to be shorter than the time scale of the time varying magnetic field for the nano-ferrofluid to be considered in an equilibrium state at each time instant. Even though the high frequency response of ferrofluid has been extensively investigated for frequencies up to GHz range by non-optical methods, harnessing dynamic response by optical means for AC magnetic field sensing in fiber-optic-based sensors-field remains unexplored.
View Article and Find Full Text PDFSci Robot
December 2024
CHARM Laboratory, Stanford, CA, USA.
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China.
Humans possess the remarkable ability to perceive the intricate world by integrating multiple senses. However, the challenge of enabling humanoid robots to achieve multimodal sensing and fine recognition of metallic materials persists. In this study, we propose a flexible tactile sensor that mimics the sensory patterns of human skin, which is assembled by a flexible electromagnetic coil that is engraved on the surface of a polyimide substrate and porous MXene/CNT aerogel.
View Article and Find Full Text PDFNature
December 2024
Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Zorya is a recently identified and widely distributed bacterial immune system that protects bacteria from viral (phage) infections. Three Zorya subtypes have been discovered, each containing predicted membrane-embedded ZorAB complexes paired with soluble subunits that differ among Zorya subtypes, notably ZorC and ZorD in type I Zorya systems. Here, we investigate the molecular basis of Zorya defense using cryo-electron microscopy, mutagenesis, fluorescence microscopy, proteomics, and functional studies.
View Article and Find Full Text PDFMiniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!