Detecting RNA/RNA interactions in the context of a given cellular system is crucial to gain insights into the molecular mechanisms that stand beneath each specific RNA molecule. When it comes to non-protein coding RNA (ncRNAs), and especially to long noncoding RNAs (lncRNAs), the reliability of the RNA purification is dramatically dependent on their abundance. Exogenous methods, in which lncRNAs are transcribed and incubated with protein extracts or overexpressed by cell transfection, have been extensively used to overcome the problem of abundance. However, although useful to study the contribution of single RNA sub-modules to RNA/protein interactions, these exogenous practices might fail in revealing biologically meaningful contacts occurring and risk to generate non-physiological artifacts. Therefore, endogenous methods must be preferred, especially for the initial identification of partners specifically interacting with elected RNAs. Here, we apply an endogenous RNA pull-down to lncMN2-203, a neuron-specific lncRNA contributing to the robustness of motor neurons specification, through the interaction with miRNA-466i-5p. We show that both the yield of lncMN2-203 recovery and the specificity of its interaction with the miRNA dramatically increase in the presence of Dextran Sulfate Sodium (DSS) salt. This new set-up may represent a powerful means for improving the study of RNA-RNA interactions of biological significance, especially for those lncRNAs whose role as microRNA (miRNA) sponges or regulators of mRNA stability was demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629853PMC
http://dx.doi.org/10.3389/fmolb.2022.1004746DOI Listing

Publication Analysis

Top Keywords

endogenous rna
8
rna pull-down
8
rna
7
advances endogenous
4
pull-down straightforward
4
straightforward dextran
4
dextran sulfate-based
4
sulfate-based method
4
method enhancing
4
enhancing rna
4

Similar Publications

Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.

View Article and Find Full Text PDF

Purpose: To provide a detailed pooled analysis of the diagnostic accuracy of microRNAs (miRNAs) in predicting the response to transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC).

Methods: A comprehensive literature search was conducted across PubMed, Embase, Cochrane Library, and Web of Science to identify studies assessing the diagnostic performance of miRNAs in predicting TACE response in HCC. Two independent reviewers performed quality assessment and data extraction using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool.

View Article and Find Full Text PDF

Objective: High altitude hypobaric hypoxia can induce hearing impairment and hearing acclimatization, but few studies have been performed to decipher the potential transition between the two states. To decipher transition-related circular RNAs (circRNAs)-microRNAs (miRNAs)-messenger RNA (mRNAs) regulatory network.

Methods: Wistar rats were airlifted from plain to high altitude and maintained for 30 days and 60 days.

View Article and Find Full Text PDF

With the emergence of high-quality sequencing technologies, further research on transcriptomes has become possible. Circular RNA (circRNA), a novel type of endogenous RNA molecule with a covalently closed circular structure through "back-splicing," is reported to be widely present in eukaryotic cells and participates mainly in regulating gene and protein expression in various ways. It is becoming a research hotspot in the non-coding RNA field.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion (I/R) injury significantly impacts the recovery of ischemic heart disease patients. Non-coding RNAs, including miRNAs, have been increasingly recognized for their roles in regulating cardiomyocyte responses to hypoxia/reoxygenation (H/R) injury. miR-181c-5p, in particular, has been implicated in inflammatory and apoptotic processes, suggesting its potential involvement in exacerbating cellular damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!