Prescription opioid use is a risk factor for the development of opioid use disorder. Digital solutions, including wearable sensors, represent a promising opportunity for health monitoring, risk stratification and harm reduction in this treatment space. However, data on their usability and acceptability in individuals using opioids is limited. To address this gap, factors that impact usability and acceptability of wearable sensor-based opioid detection were qualitatively studied in participants enrolled in a wearable sensor-based opioid monitoring research study. At the conclusion of the monitoring period, participants were invited to take part in semi-structured interviews developed based on the technology acceptance model. Thematic analysis was conducted first using deductive, then inductive coding strategies. Forty-four participants completed the interview; approximately half were female. Major emergent themes include sensor usability, change in behavior and thought process related to sensor use, perceived usefulness in sensor-based monitoring, and willingness to have opioid use patterns monitored. Overall acceptance for sensor-based monitoring was high. Aesthetics, simplicity, and seamless functioning were all reported as key to usability. Perceived behavior changes related to monitoring were infrequent while perceived usefulness in monitoring was frequently projected onto others, requiring careful consideration regarding intervention development and targeting. Specifically, care must be taken to avoid stigma associated with opioid use and implied misuse. The design of sensor systems targeted for opioid use must also consider the physical, social, and cognitive alterations inherent in the respective disease processes compared to routine daily life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634745 | PMC |
http://dx.doi.org/10.3389/fdgth.2022.969642 | DOI Listing |
Front Neurol
January 2025
Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), KU Leuven, Leuven, Belgium.
Introduction: Freezing of gait (FOG) is a disabling symptom for people with Parkinson's disease (PwPD). Turning on the spot for one minute in alternating directions (360 turn) while performing a cognitive dual-task (DT) is a fast and sensitive way to provoke FOG. The FOG-index is a widely used wearable sensor-based algorithm to quantify FOG severity during turning.
View Article and Find Full Text PDFFront Psychol
January 2025
Comprehensive Research Organization, Waseda University, Tokyo, Japan.
Background: Dietary management in diabetic patients is affected by psychosocial factors and the social-environmental context. Ecological momentary assessment (EMA) allows patients to consistently report their experiences in real-time over a certain period and across different contexts. Despite the importance of dietary management, only a few EMA studies have been conducted on dietary management and psychosocial factors in patients with type 2 diabetes; further evidence must be gathered.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. Electronic address:
Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer.
View Article and Find Full Text PDFWearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er/Yb co-doped GdO nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:
Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!