Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids.

J King Saud Univ Sci

Department of Pharmaceutical Chemistry & Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.

Published: January 2023

Objectives: We performed a virtual screening of olive secoiridoids of the OliveNet library to predict SARS-CoV-2 PLpro inhibition. Benchmarked molecular docking protocol that evaluated the performance of two docking programs was applied to execute virtual screening. Molecular dynamics stability analysis of the top-ranked olive secoiridoid docked to PLpro was also carried out.

Methods: Benchmarking virtual screening used two freely available docking programs, AutoDock Vina 1.1.2. and AutoDock 4.2.1. for molecular docking of olive secoiridoids to a single PLpro structure. Screening also included benchmark structures of known active and decoy molecules from the DEKOIS 2.0 library. Based on the predicted binding energies, the docking programs ranked the screened molecules. We applied the usual performance evaluation metrices to evaluate the docking programs using the predicted ranks. Molecular dynamics of the top-ranked olive secoiridoid bound to PLpro and computation of MM-GBSA energy using three iterations during the last 50 ps of the analysis of the dynamics in Desmond supported the stability prediction.

Results And Discussions: Predictiveness curves suggested that AutoDock Vina has a better predictive ability than AutoDock, although there was a moderate correlation between the active molecules rankings (Kendall's correlation of rank (τ) = 0.581). Interestingly, two same molecules, Demethyloleuropein aglycone, and Oleuroside enriched the top 1 % ranked olive secoiridoids predicted by both programs. Demethyloleuropein aglycone bound to PLpro obtained by docking in AutoDock Vina when analyzed for stability by molecular dynamics simulation for 50 ns displayed an RMSD, RMSF<2 Å, and MM-GBSA energy of -94.54 ± 6.05 kcal/mol indicating good stability. Molecular dynamics also revealed the interactions of Demethyloleuropein aglycone with binding sites 2 and 3 of PLpro, suggesting a potent inhibition. In addition, for 98 % of the simulation time, two phenolic hydroxy groups of Demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro, specifying the significance of the groups in receptor binding.

Conclusion: AutoDock Vina retrieved the active molecules accurately and predicted Demethyloleuropein aglycone as the best inhibitor of PLpro. The Arabian diet consisting of olive products rich in secoiridoids benefits from the PLpro inhibition property and reduces the risk of viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617799PMC
http://dx.doi.org/10.1016/j.jksus.2022.102402DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
olive secoiridoids
16
docking programs
16
molecular docking
12
virtual screening
12
autodock vina
12
benchmarked molecular
8
docking
8
dynamics stability
8
stability analysis
8

Similar Publications

Chromosome distribution of four LTR retrotransposons and 18 S rDNA in coffea eugenioides.

Sci Rep

January 2025

Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa. ZIP, 36.570-900, Viçosa - MG, Brazil.

Repetitive sequences are recognized for their roles in plant genome organization and function. Mobile elements are notable repeatome sequences due to their intrinsic mutagenic potential, which is related to the origin of adaptive novelties. Understanding the genomic organization and dynamics of the repeatome is fundamental to enlighten their role in plant genome evolution.

View Article and Find Full Text PDF

Domperidone inhibits dengue virus infection by targeting the viral envelope protein and nonstructural protein 1.

Sci Rep

January 2025

Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.

View Article and Find Full Text PDF

Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.

View Article and Find Full Text PDF

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

Advanced Peptide Nanozymes with Dual Antifungal Mechanisms: Cutting-Edge Innovations in Combatting Antimicrobial Resistance.

Curr Microbiol

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.

This letter commends the recent innovative research findings on "Dual-Action Antifungal Peptide Nanozymes: A Novel Approach to Combatting Antimicrobial Resistance." The study introduces a pioneering method to address antimicrobial resistance by developing peptide nanozymes that mimic antimicrobial peptides and enzymes through de novo design and peptide assembly. The heptapeptide IHIHICI, designed using AlphaFold2 and molecular dynamics simulations, exhibits high stability and dual antifungal actions, effectively killing over 90% of Candida albicans within 10 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!