The frequency of primary small intestinal adenocarcinoma is increasing but is still low. Its frequency is approximately 3% of that of colorectal adenocarcinoma. Considering that the small intestine occupies 90% of the surface area of the gastrointestinal tract, small intestinal adenocarcinoma is very rare. The main site of small intestinal adenocarcinoma is the proximal small intestine. Based on this characteristic, dietary animal proteins/lipids and bile concentrations are implicated and reported to be involved in carcinogenesis. Since most nutrients are absorbed in the proximal small intestine, the effect of absorbable intestinal content is a suitable explanation for why small intestinal adenocarcinoma is more common in the proximal small intestine. The proportion of aerobic bacteria is high in the proximal small intestine, but the absolute number of bacteria is low. In addition, the length and density of villi are greater in the proximal small intestine. However, the involvement of villi is considered to be low because the number of small intestinal adenocarcinomas is much smaller than that of colorectal adenocarcinomas. On the other hand, the reason for the low incidence of small intestinal adenocarcinoma in the distal small intestine may be that immune organs reside there. Genetic and disease factors increase the likelihood of small intestinal adenocarcinoma. In carcinogenesis experiments in which the positions of the small and large intestines were exchanged, tumors still occurred in the large intestinal mucosa more often. In other words, the influence of the intestinal contents is small, and there is a large difference in epithelial properties between the small intestine and the large intestine. In conclusion, small intestinal adenocarcinoma is rare compared to large intestinal adenocarcinoma due to the nature of the epithelium. It is reasonable to assume that diet is a trigger for small intestinal adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627424PMC
http://dx.doi.org/10.3748/wjg.v28.i39.5658DOI Listing

Publication Analysis

Top Keywords

small intestinal
40
small intestine
36
intestinal adenocarcinoma
36
proximal small
24
small
21
intestinal
14
intestine
10
adenocarcinoma
10
intestinal adenocarcinomas
8
common proximal
8

Similar Publications

Phoronida is a small group of marine animals, most of which are characterized by a long larval period and complex metamorphosis. As a result of metamorphosis, their body changes so much that their true anterior and posterior ends are very close to each other, and the intestine becomes long and U-shaped. Using histology and electron microscopy, we have shown that the elongation and change in shape of the digestive tract that occurs during metamorphosis in Phoronopsis harmeri larvae is accompanied by the formation of new parts and changes in ultrastructure.

View Article and Find Full Text PDF

The small intestine is the longest segment of the gastrointestinal (GI) tract, but cancers in the small intestine are infrequent. The duodenojejunal (DJ) flexure is an uncommon site for tumors, and those located in these sites are difficult to identify and manage properly. Their rarity, along with ambiguous symptoms that can be readily misattributed to milder conditions, results in a delayed diagnosis when the tumors have significantly advanced.

View Article and Find Full Text PDF

Background: Mucosal healing (MH) is the major therapeutic target for Crohn's disease (CD). As the most commonly involved intestinal segment, small bowel (SB) assessment is crucial for CD patients. Yet, it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.

View Article and Find Full Text PDF

Synchronous colorectal cancer is a rare disease. It remains challenging for diagnosis and treatment. This paper reports a case of a 75-year-old Chinese male patient presenting with intestinal obstruction, alongside primary thrombocytopenia and a diagnosis of small B-cell lymphoma.

View Article and Find Full Text PDF

Prolonged storage reduces viability of and core intestinal bacteria in fecal microbiota transplantation preparations for dogs.

Front Microbiol

January 2025

Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States.

Introduction: Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess () viability through culture to further characterize bacterial viability in different protocols for FMT preparations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!