Antimicrobial activity effects of electrolytically generated hypochlorous acid-treated pathogenic microorganisms by isothermal kinetic simulation.

J Therm Anal Calorim

Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354 Taiwan.

Published: November 2022

This study involves isothermal kinetic simulation to evaluate the parameters of inhibition conditions for () and () of high-risk pathogens. This is because the new type of the 2019 novel coronavirus (2019-nCoV) is continuously spreading and the importance of public health issues. Environmental disinfection and personal wearing of masks have become important epidemic prevention measures. Selection of concentration kinetics could be estimated best for and of pathogens, 2.74 × 10 and 10 and 2.44 × 10 and 10 colony-forming units (CFU mL), by isothermal micro-calorimeter (TAM Air) tests, respectively. Comparisons were made of different doses of 0-70 ppm (in 20 mL test ampoule) hypochlorous acid treatment for conducting th-order and autocatalytic reaction simulation to evaluate the inhibition reaction parameters, which determined the autocatalytic kinetic model that was beneficially applied on the and . We developed the inhibition reaction parameters of the pathogens, which included the activation energy ( ), the natural logarithm of pre-exponential factor (ln ), the enthalpy of inhibition microbial growth reaction (), inhibition microbial growth, and the inhibition growth analysis. Overall, we conducted isothermal kinetic simulation to understand the antimicrobial activity effects of electrolytically generated hypochlorous acid-treated pathogenic microorganisms, which will provide reference for public health and medical-related fields for SDG3, and can contribute to ensuring human health and hygiene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628503PMC
http://dx.doi.org/10.1007/s10973-022-11727-4DOI Listing

Publication Analysis

Top Keywords

isothermal kinetic
12
kinetic simulation
12
antimicrobial activity
8
activity effects
8
effects electrolytically
8
electrolytically generated
8
generated hypochlorous
8
hypochlorous acid-treated
8
acid-treated pathogenic
8
pathogenic microorganisms
8

Similar Publications

Impact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur.  This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.

View Article and Find Full Text PDF

Flaxseed gum (FSG) has promising applications in the field of nano/microencapsulation for its biocompatibility and excellent physicochemical properties. In this study, FSG-based nano-microcapsules (FSG NPs) were prepared using high-speed shear homogenization combined with ultrasound for efficient encapsulation of secoisolariciresinol diglucoside (SDG). The particle size of FSG stands for nano-microcapsules (NP) was determined to be 336.

View Article and Find Full Text PDF

Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

Anal Bioanal Chem

January 2025

Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.

View Article and Find Full Text PDF

The application of mesoporous silica nanoparticles (MSN) as a drug carrier system got immense attention in the past few years due to their exceptional high drug loading efficiency. However, the process of drug loading is quite challenging compared to other lipid-based drug delivery systems. Hence, the MSNs using different catalysts were synthesized, and their mesoporous material characteristic was confirmed by the type IV adsorption-desorption isotherm using BET analyzer.

View Article and Find Full Text PDF

Methylene blue and malachite green dyes adsorption onto /bentonite/tripolyphosphate.

Heliyon

January 2025

Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey.

In the current research mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!