Nanobodies are single variable domain antibodies isolated from camelids and are rapidly distinguishing themselves as ideal recognition elements in biosensors due to their comparative stability, ease of production and isolation, and high binding affinities. However, transducing analyte binding by nanobodies in real time is challenging, as most nanobodies do not directly produce an optical or electrical signal upon target recognition. Here, we report a general strategy to fabricate sensitive and selective electrochemical sensors incorporating nanobodies for detecting target analytes in heterogeneous media, such as cell lysate. Graphite felt can be covalently functionalized with recombinant HaloTag-modified nanobodies. Subsequent encapsulation with a thin layer of a hydrogel using a vapor deposition process affords encapsulated electrodes that directly display a decrease in current upon antigen binding, without added redox mediators. Differential pulse voltammetry affords clear and consistent decreases in electrode current across multiple electrode samples for specific antigen concentrations. The change in observed current vs increasing antigen concentration follows Langmuir binding characteristics, as expected. Importantly, selective and repeatable target binding in unpurified cell lysate is only demonstrated by the encapsulated electrode, with an antigen detection limit of ca. 30 pmol, whereas bare electrodes lacking encapsulation produce numerous false positive signals in control experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635334PMC
http://dx.doi.org/10.1149/2754-2726/ac5b2eDOI Listing

Publication Analysis

Top Keywords

electrochemical sensors
8
cell lysate
8
nanobodies
5
binding
5
strategy accessing
4
accessing nanobody-based
4
nanobody-based electrochemical
4
sensors analyte
4
analyte detection
4
detection complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!