Ewing sarcoma is an aggressive childhood cancer for which treatment options remain limited and toxic. There is an urgent need for the identification of novel therapeutic strategies. Our group has recently shown that Ewing cells rely on the S-phase kinase CDC7 (DDK) to maintain replication rates and cell viability and that DDK inhibition causes an increase in the phosphorylation of CDK1 and a significant delay in mitotic entry. Here, we expand on our previous findings and show that DDK inhibitor-induced mitotic entry delay is dependent upon WEE1 kinase. Specifically, WEE1 phosphorylates CDK1 and prevents mitotic entry upon DDK inhibition due to the presence of under-replicated DNA, potentially limiting the cytotoxic effects of DDK inhibition. To overcome this, we combined the inhibition of DDK with the inhibition of WEE1 and found that this results in elevated levels of premature mitotic entry, mitotic catastrophe, and apoptosis. Importantly, we have found that DDK and WEE1 inhibitors display a synergistic relationship with regards to reducing cell viability of Ewing sarcoma cells. Interestingly, the cytotoxic nature of this combination can be suppressed by the inhibition of CDK1 or microtubule polymerization, indicating that mitotic progression is required to elicit the cytotoxic effects. This is the first study to display the potential of utilizing the combined inhibition of DDK and WEE1 for the treatment of cancer. We believe this will offer a potential therapeutic strategy for the treatment of Ewing sarcoma as well as other tumor types that display sensitivity to DDK inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635308 | PMC |
http://dx.doi.org/10.1158/2767-9764.crc-22-0130 | DOI Listing |
PLoS One
January 2025
Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, 34755, Turkey.
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.
View Article and Find Full Text PDFbioRxiv
December 2024
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Quiescence in is a reversible G crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
Unlabelled: Human papillomaviruses (HPVs) travel from the trans-Golgi network (TGN) to the condensed (mitotic) chromosomes during mitosis. Partially uncoated HPV capsids utilize a unique vesicular structure for trafficking and nuclear import, which is directed by the minor capsid protein L2. However, it is still unknown which precise factors facilitate post-TGN HPV trafficking to the nucleus.
View Article and Find Full Text PDFGene Expr Patterns
December 2024
The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia; The Queensland Brain Institute, The University of Queensland, QLD, 4072, Australia. Electronic address:
The Hippo pathway is a critical regulator of animal development. Activation of the Hippo pathway causes a cascade of phosphorylation events that culminate in the phosphorylation of the transcriptional co-factors YAP and TAZ, which limits their entry into the nucleus. When the Hippo pathway is 'off', however, YAP and TAZ can enter the nucleus, where they interact with the transcription factors of the TEA Domain (TEAD) family to regulate transcriptional activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!