Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626752PMC
http://dx.doi.org/10.3389/fbioe.2022.1044667DOI Listing

Publication Analysis

Top Keywords

pvdf samples
12
pvdf
11
polyvinylidene fluoride
8
mechanical properties
8
processing methods
8
pvdf scaffolds
8
development evaluation
4
evaluation electroactive
4
electroactive polyvinylidene
4
fluoride architectures
4

Similar Publications

Novel dual-channel ratiometric fluorescence probe for SO detection in food and bioimaging applications based on FRET mechanism.

Bioorg Chem

December 2024

Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China. Electronic address:

SO is commonly used to ensure the safety of food, but englobing of excessive SO poses serious risks to human health. Additionally, as fourth gaseous signaling molecule, it plays a critical role in various physiological processes. Therefore, monitoring the concentration of SO in food and cells is crucial for correlative research and disease diagnosis.

View Article and Find Full Text PDF

Polyvinylidene fluoride transducer shape optimization for the characterization of anisotropic materials.

J Acoust Soc Am

December 2024

Departamento ICES, Comisión Nacional de Energía Atómica, Villa Maipú, B1650, Argentina.

In the context of ultrasonic determination of mechanical properties, it is common to use oblique incident waves to characterize fluid-immersed anisotropic samples. The lateral displacement of the ultrasonic field owing to leaky guided wave phenomena poses a challenge for data inversion because beam spreading is rarely well represented by plane wave models. In this study, a finite beam model based on the angular spectrum method was developed to estimate the influence of the transducer shape and position on the transmitted signals.

View Article and Find Full Text PDF

Synthesis of reusable hierarchical Pore PVDF-MIL-101(Cr) foam for Solid phase extraction of fluoroquinolones from water and its adsorption behavior for anionic and cationic dyes.

J Chromatogr A

January 2025

School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355 Shandong Province, PR China; School of Pharmacy, Jining Medical University, Rizhao 276826 Shandong Province, PR China. Electronic address:

In this study, a novel hierarchical pore MIL-101(Cr) foam (HPF-MIL-101) was designed and prepared using the sacrificial template method with NaCl as the sacrificial template. This method involved grinding, heating, and washing the NaCl template to produce HPF-MIL-101, with PVDF as the binder and MIL-101(Cr) as the adsorbent. This preparation process is both straightforward and cost-effective, avoiding the use or generation of any organic reagents, thereby offering an environmentally sustainable approach for producing metal-organic framework (MOF) composites.

View Article and Find Full Text PDF

Altered O-Glycans in stimulated whole saliva from patients with primary Sjögren's syndrome and non-pSS sicca.

Sci Rep

November 2024

Section for Oral Biology and Immunopathology/Oral Medicine & Pathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

To investigate if salivary O-linked glycans are altered in primary Sjögren's syndrome (pSS), and thus contributing to explain symptoms of oral dryness, and an impaired oral mucosal barrier function leading to changes in microbial metabolism and colonization by both pathogenic and commensal microorganisms and increased prevalence of oral diseases. O-linked oligosaccharides from stimulated whole saliva (SWS) samples from 24 patients with pSS, 38 patients with non-pSS sicca, and 23 healthy controls were analyzed using liquid chromatography mass spectrometer (LC-MS). Non-fractionated reduced and alkylated saliva was dot-blotted to PVDF-membrane and O-linked oligosaccharides were released using reductive beta-elimination.

View Article and Find Full Text PDF

This study developed a novel 3D-printable poly(vinylidene fluoride) (PVDF)-based nanocomposite incorporating 6 wt% graphene nanoplatelets (GNPs) with programmable characteristics for resistive heating applications. The results highlighted the significant effect of a controlled printing direction (longitudinal, diagonal, and transverse) on the electrical, thermal, Joule heating, and thermo-resistive properties of the printed structures. The 6 wt% GNP/PVDF nanocomposite exhibited a high electrical conductivity of 112 S·m when printed in a longitudinal direction, which decreased significantly in other directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!