Background: This study aimed to explore whether S-Equol delays diabetes-induced osteoporosis and the molecular mechanisms underlying its therapeutic effects.

Materials And Methods: Thirty-five male Sprague-Dawley rats were randomized into five groups. The diabetic osteoporosis (DOP) group and three S-Equol treatment groups were intraperitoneally injected with streptozotocin (STZ) to develop a DOP model. After the 12-week intervention, bone transformation indicators were detected using an enzyme-linked immunosorbent assay kit; bone mineral density (BMD) and bone microstructure were obtained using dual-energy X-ray absorptiometry and microCT; morphological changes in the bone tissue were investigated using HE staining; bone morphogenetic proteins were detected using immunohistochemical staining. ROS17/2.8 cells were cultured , and Cell Counting Kit-8 was used to test the protective effects of S-Equol in osteoblastic cells in a high-fat and high-glucose environment. Furthermore, the expression of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), estrogen receptor β(ERβ), phosphorylated Akt (pAKT)/protein kinase B (AKT), and osteocalcin (OC) in bone tissue and ROS17/2.8 cells was assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blotting. To determine whether ERβ and phosphatidylinositol 3' -kinase (PI3K)/AKT signaling pathways are involved in the process, LY294002 (PI3K signaling pathway inhibitor) and small interfering RNA targeting ERβ mRNA (si-ERβ) were used to verify the function of the ERβ-mediated PI3K/AKT pathway in this process.

Results: After the 12-week intervention, S-Equol enhanced BMD, improved bone microarchitecture in DOP rats ( < 0.05), and improved markers of bone metabolism ( < 0.05). , 10 mmol/L S-Equol was selected to significantly protect osteoblasts from high- and high-glucose environments ( < 0.05). Gene expression of OPG, ERβ, pAKT/AKT, and OC was upregulated compared to the DOP group, and RANKL was downregulated compared to the DOP group ( < 0.05) both in bone tissue and osteoblastic cells. The promotion of OPG and pAKT/AKT is mediated by LY294002 and siERβ.

Conclusion: S-Equol binds to ERβ to regulate OPG/RANKL the PI3K/AKT pathway and improve DOP. Our results demonstrate the potential role of S-Equol in the treatment of DOP by targeting ERβ. Thus, S-Equol may have the potential to be an adjuvant drug for treating DOP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633996PMC
http://dx.doi.org/10.3389/fnut.2022.986192DOI Listing

Publication Analysis

Top Keywords

pi3k/akt pathway
12
dop group
12
bone tissue
12
bone
11
s-equol
9
opg/rankl pi3k/akt
8
dop
8
s-equol treatment
8
12-week intervention
8
ros17/28 cells
8

Similar Publications

Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.

View Article and Find Full Text PDF

Acute renal injury (AKI) has a high incidence rate and mortality, but current treatment methods are limited. As a kind of nanomaterial with enzyme-like activity, nanozyme has shown outstanding advantages in treating AKI according to recent reports. Herein, we assess the potential of manganese-based nanozymes (MnO-BSA NPs) with excellent biosafety in effectively alleviating AKI.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!