The disease of type 2 diabetes mellitus (T2DM) is principally induced by insufficient insulin secretion and insulin resistance. In the current study, fruit body polysaccharide (SVP) was prepared and structurally characterized. It was shown that the yield of SVP was 1.91%, and SVP mainly contains small molecular weight polysaccharides. Afterward, the hypoglycemic and hypolipidemic effects and the potential mechanism of SVP in T2DM mice were investigated. The results exhibited oral SVP could reverse the body weight loss, high levels of blood glucose, insulin resistance, hyperlipidemia, and inflammation in T2DM mice. Oral SVP increased fecal short-chain fatty acids (SCFAs) concentrations of T2DM mice. Additionally, 16S rRNA sequencing analysis illustrated that SVP can modulate the structure and function of intestinal microflora in T2DM mice, indicating as decreasing the levels of Firmicutes/Bacteroidetes, , , and increasing the levels of , , and . Additionally, the levels of predicted metabolic functions of Citrate cycle, GABAergic synapse, Insulin signaling pathway were increased, and those of Purine metabolism, Taurine and hypotaurine metabolism, and Starch and sucrose metabolism were decreased in intestinal microflora after SVP treatment. These findings demonstrate that SVP could potentially play hypoglycemic and hypolipidemic effects by regulating gut microflora and be a promising nutraceutical for ameliorating T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632624PMC
http://dx.doi.org/10.3389/fnut.2022.1013466DOI Listing

Publication Analysis

Top Keywords

t2dm mice
16
intestinal microflora
12
svp
9
fruit body
8
body polysaccharide
8
insulin resistance
8
hypoglycemic hypolipidemic
8
hypolipidemic effects
8
oral svp
8
t2dm
6

Similar Publications

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes mellitus (T2DM) often leads to elevated blood glucose levels and lipid metabolism disorder, which is generally accompanied by dysbiosis of gut microbiota and metabolic dysfunction.

Methods: In this study, a mouse model of T2DM was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. The aim of this study was to analyze the regulatory effect of Suaeda salsa extract (SSE) on T2DM and its effect on the intestinal flora of mice.

View Article and Find Full Text PDF

AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.

Life Sci

December 2024

College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:

Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.

View Article and Find Full Text PDF

Construction of a mitochondrial-targeting near-infrared fluorescent probe for detection of viscosity changes in type 2 diabetes mellitus and nonalcoholic steatohepatitis.

Talanta

December 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China. Electronic address:

The intracellular viscosity plays a pivotal role as a physicochemical factor and an important indicator of organelles performance. Abnormal changes in subcellular viscosity are often associated with cellular malfunction and various diseases. Nonalcoholic steatohepatitis (NASH) is the most common liver disease related with type 2 diabetes mellitus (T2DM), and both are linked to aberrant mitochondrial viscosity.

View Article and Find Full Text PDF

Gegen Qinlian Decoction inhibits liver ferroptosis in type 2 diabetes mellitus models by targeting Nrf2.

J Ethnopharmacol

December 2024

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, PR China; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, PR China. Electronic address:

Article Synopsis
  • Type 2 diabetes mellitus (T2DM) can cause multi-organ complications, particularly in the liver, and Gegen Qinlian Decoction (GQD) shows promise in managing these issues according to modern Chinese medicine.
  • The study aimed to investigate how GQD improves liver injury in T2DM through various experimental methods including UPLC analysis and animal models.
  • Results indicated that GQD enhances liver function, reduces oxidative stress and lipid peroxidation, and alleviates iron overload, suggesting it helps protect against liver injury by inhibiting ferroptosis via Nrf2 modulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!