COVID-19 Outbreak Forecasting Based on Vaccine Rates and Tweets Classification.

Comput Intell Neurosci

REsearch Groups in Intelligent Machines (REGIM-Lab), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia.

Published: November 2022

The spread of COVID-19 has affected more than 200 countries and has caused serious public health concerns. The infected cases are on the increase despite the effectiveness of the vaccines. An efficient and quick surveillance system for COVID-19 can help healthcare decision-makers to contain the virus spread. In this study, we developed a novel framework using machine learning (ML) models capable of detecting COVID-19 accurately at an early stage. To estimate the risks, many models use social networking sites (SNSs) in tracking the disease outbreak. Twitter is one of the SNSs that is widely used to create an efficient resource for disease real-time analysis and can provide an early warning for health officials. We introduced a pipeline framework of outbreak prediction that incorporates a first-step hybrid method of word embedding for tweet classification. In the second step, we considered the classified tweets with external features such as vaccine rate associated with infected cases passed to machine learning algorithms for daily predictions. Thus, we applied different machine learning models such as the SVM, RF, and LR for classification and the LSTM, Prophet, and SVR for prediction. For the hybrid word embedding techniques, we applied TF-IDF, FastText, and Glove and a combination of the three features to enhance the classification. Furthermore, to improve the forecast performance, we incorporated vaccine data as input together with tweets and confirmed cases. The models' performance is more than 80% accurate, which shows the reliability of the proposed study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633186PMC
http://dx.doi.org/10.1155/2022/4535541DOI Listing

Publication Analysis

Top Keywords

machine learning
12
infected cases
8
learning models
8
word embedding
8
covid-19
4
covid-19 outbreak
4
outbreak forecasting
4
forecasting based
4
based vaccine
4
vaccine rates
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!