Quercetin is one of the most used antioxidant flavonoids and largely exists in many fruits and vegetables because of its capability to scavenge the free reactive oxygen species (ROSs) by repressing lipid peroxy radical fusion, metal ion chelating through enzyme inhibition, and adopting the repair mechanisms. It also exhibits various biological actions, including antioxidative, anti-inflammatory and antimicrobial activities. Furthermore, it contributes well to sustaining the endogenous cellular antioxidant defence system. The process of cryopreservation is associated with increased oxidative stress, and some steps are potential sources of ROSs, including the method of semen collection, handling, cryopreservation culture media, and thawing, which result in impaired sperm function. Several antioxidants have been proposed to counteract the harmful impact of ROS during semen cryopreservation. The antioxidant capability of quercetin has been verified in different animal species for providing valuable defence to sperm during the cryopreservation process. The beneficial properties of quercetin on various parameters of fresh and post-thaw sperm in different species are clarified in this review. More in-depth investigations are required to clarify quercetin's mechanism of action in different animal species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.14291DOI Listing

Publication Analysis

Top Keywords

animal species
8
quercetin
4
quercetin putative
4
putative effects
4
effects function
4
function cryopreserved
4
cryopreserved sperms
4
sperms domestic
4
domestic animals
4
animals quercetin
4

Similar Publications

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

De novo transcriptome assembly of the Perna viridis: A novel invertebrate model for ecotoxicological studies.

Sci Data

January 2025

Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.

Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Artificial fish nests are common tools in fisheries management, providing spawning grounds to enhance the size and diversity of fish populations. This study aimed to explore the effects of deployment locations on the reproductive efficiency and preferences of fish with adhesive and demersal eggs using artificial nests. Floating artificial nests were deployed in three regions (upstream, midstream, and downstream) of a reservoir in Zhejiang, China, at locations with three topographical types: steep slope (reservoir shore, slopes > 60°), gentle slope (reservoir shore, slopes < 30°), and confluence (middle thread of channel).

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!