How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level.

Int J Biochem Cell Biol

Department of Mechanical Engineering, Johns Hopkins University, MD, USA; Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA. Electronic address:

Published: December 2022

We review the progress made in imaging probes for three important physical parameters: viscosity, membrane tension, and temperature, all of which play important roles in many cellular processes. Recent evidences showed that cell migration speed can be modulated by extracellular fluid viscosity; membrane tension contributes to the regulation of cell motility, exo-/endo-cytosis, and cell spread area; and temperature affects neural activity and adipocyte differentiation. We discuss the techniques implementing imaging-based probes to measure viscosity, membrane tension, and temperature at subcellular resolution dynamically. The merits and shortcomings of each technique are examined, and the future applications of the recently developed techniques are also explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148659PMC
http://dx.doi.org/10.1016/j.biocel.2022.106329DOI Listing

Publication Analysis

Top Keywords

viscosity membrane
16
membrane tension
16
tension temperature
12
imaging probes
8
fluid viscosity
8
sticky? tight?
4
tight? hot?
4
hot? imaging
4
probes fluid
4
viscosity
4

Similar Publications

Article Synopsis
  • Human mesenchymal stem cells (hMSCs) react to mechanical stimuli like stiffness and fluid viscosity, which impacts their behavior.
  • In environments with high fluid viscosity, hMSCs favor an osteogenic (bone-forming) phenotype over an adipogenic (fat-forming) one by altering their actin structure and enhancing cellular activities.
  • This research highlights fluid viscosity as an important factor that not only influences hMSC differentiation but also encourages a more immunosuppressive M2 macrophage phenotype.
View Article and Find Full Text PDF

Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.

View Article and Find Full Text PDF

The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Lacosamide (LCM) selectively increases the slow inactivation of voltage-gated sodium channels (VGSCs) and is a N-methyl D-aspartate acid (NMDA) receptor glycine site antagonist. Therefore, it can be used in dryness-related hyperexcitability of corneal cold receptor nerve terminals. Ocular in-situ gels remain in liquid form until they reach the target site, where they undergo a sol-gel transformation in response to specific stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!