Skeletal muscle in patients with heart failure (HF) exhibits altered structure, function and metabolism. Myocardial infarction (MI) is the most common cause of HF. Oxidative stress and cell apoptosis are involved in the pathophysiology of MI/HF-induced skeletal muscle atrophy. It is well recognized that aerobic exercise (AE) could prevent skeletal muscle atrophy after MI, but the underlying mechanism and molecular targets are still not fully clarified. In this study, Fndc5 and Alcat1 mice were used to establish the MI model and subjected to six weeks of moderate-intensity AE. C2C12 cells were treated with HO and recombinant human Irisin (rhIrisin), or transduced with a lentiviral vector to mediate the overexpression of ALCAT1 (LV-Alcat1). Results showed that MI reduced Irisin expression and antioxidant capacity of skeletal muscle, increased ALCAT1 expression, induced protein degradation and cell apoptosis, which were partly reversed by AE; Knockout of Fndc5 further aggravated MI-induced oxidative stress and cell apoptosis in skeletal muscle, and partly weakened the beneficial effects of AE. In contrast, knockout of Alcat1 reduced MI-induced oxidative stress and cell apoptosis and strengthened the beneficial effects of AE. rhIrisin and AICAR intervention inhibited ALCAT1 expression, oxidative stress and cell apoptosis, which induced by HO or LV-Alcat1 in C2C12 cells. These findings reveal that AE could alleviate the levels of oxidative stress and apoptosis in skeletal muscle following MI, partly via up-regulating Irisin and inhibiting ALCAT1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.321DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
oxidative stress
24
cell apoptosis
20
stress cell
16
apoptosis skeletal
12
alcat1 expression
12
stress apoptosis
8
myocardial infarction
8
muscle atrophy
8
mi-induced oxidative
8

Similar Publications

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Background: When designing cutting-edge technology, particularly humanoid social robots, an essential consideration is understanding how individuals naturally engage in social interactions, shaping their relationships with technology and media.

Method: In pursuit of insights into the application of natural human behavior, specifically reciprocation, in human-robot interaction, an experiment involving 72 participants, involving facial electromyography, focusing on zygomatic and corrugator muscles, served as a tool to gauge users' emotional valence during interactions. The study assessed users' willingness to reciprocate a favor and measured compliance by tracking the number of raffle tickets purchased by users at the robot's request.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.

View Article and Find Full Text PDF

Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of HO, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!