GABAergic regulation of cell proliferation within the adult mouse spinal cord.

Neuropharmacology

School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK. Electronic address:

Published: February 2023

AI Article Synopsis

  • * It demonstrates that changes in ambient GABA levels significantly impact cell proliferation in the spinal cord, showing that increasing or decreasing GABA affects the number of proliferating cells in specific experimental setups.
  • * The research suggests that factors like the Diazepam binding inhibitor and modulation of GABA receptor activity play crucial roles in regulating NSC proliferation, paving the way for future studies on GABAergic signaling for spinal cord healing and tumor management.

Article Abstract

Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2022.109326DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cell proliferation
16
proliferation adult
8
stem cell
8
gaba levels
8
gaba receptors
8
gabaergic signalling
8
spinal
7
cord
7
cell
5

Similar Publications

Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed.

View Article and Find Full Text PDF

Background: Gait impairments are one of the popular consequences of spinal cord injury (SCI). Acute intermittent hypoxia (AIH) is an innovative treatment that has recently been used to enhance motor function in patients with neurological conditions. This review aims to examine the effects of AIH on gait post-SCI, verify who most likely would benefit from the treatment, and recognize the best treatment protocol, if possible.

View Article and Find Full Text PDF

Voxel-based morphometry (VBM) of T1-weighted (T1-w) magnetic resonance imaging (MRI) is primarily used to study the association of brain structure with cognitive functions. However, in theory, T2-weighted (T2-w) MRI could also be used in VBM studies because of its sensitivity to pathology and tissue changes. We aimed to compare the T1-w and T2-w images to study brain structures in association with cognitive abilities.

View Article and Find Full Text PDF

Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!