A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins. | LitMetric

Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins.

Chemosphere

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China. Electronic address:

Published: January 2023

With the high integration of electronic products in our daily life, high-performance epoxy resins (EP) with excellent flame retardancy, smoke suppression, and mechanical strength are highly desired for applications. In this study, copper organophosphate nanosheets were evenly grown on the surface of graphene oxide (GO) via a self-assembly process based on coordination bonding and electrostatic interactions. The resultant nanohybrid endowed EP with satisfactory flame retardant effect and improved mechanical properties. Incorporating functionalized nanosheets of merely 1 wt% loading, the impact strength of the EP nanocomposites improved by 147% when compared to 1% EP-GO. Additionally, the nanosheets inhibited the smoke and heat release of EP, and the limiting oxygen value of EP-EGOPC reached ∼29%. The mechanism analysis verified that the existence of organophosphate and copper-containing components associated with the physical barrier of GO promoted the hybrid aromatization of the char layer, thereby improving the fire safety of epoxy matrix. This research offers a new interfacial method for designing functional nanosheets with good interface compatibility and high flame-retardant efficiency in polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137047DOI Listing

Publication Analysis

Top Keywords

copper organophosphate
8
organophosphate nanosheets
8
graphene oxide
8
fire safety
8
mechanical strength
8
epoxy resins
8
nanosheets
5
growth copper
4
nanosheets graphene
4
oxide improve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!