Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the high integration of electronic products in our daily life, high-performance epoxy resins (EP) with excellent flame retardancy, smoke suppression, and mechanical strength are highly desired for applications. In this study, copper organophosphate nanosheets were evenly grown on the surface of graphene oxide (GO) via a self-assembly process based on coordination bonding and electrostatic interactions. The resultant nanohybrid endowed EP with satisfactory flame retardant effect and improved mechanical properties. Incorporating functionalized nanosheets of merely 1 wt% loading, the impact strength of the EP nanocomposites improved by 147% when compared to 1% EP-GO. Additionally, the nanosheets inhibited the smoke and heat release of EP, and the limiting oxygen value of EP-EGOPC reached ∼29%. The mechanism analysis verified that the existence of organophosphate and copper-containing components associated with the physical barrier of GO promoted the hybrid aromatization of the char layer, thereby improving the fire safety of epoxy matrix. This research offers a new interfacial method for designing functional nanosheets with good interface compatibility and high flame-retardant efficiency in polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!