Radiolysis effect on Eu(III)-superplasticiser interactions in artificial cement and squeezed cement pore waters.

J Hazard Mater

Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivité des Surfaces (SEARS), F-91191 Gif-sur-Yvette, France.

Published: February 2023

In the framework of the French deep geological repository for radioactive waste, cement-based materials are envisaged to immobilize radionuclides and/or provide protection from radiation to the environment. Superplasticisers (SPs) are added to these materials to increase their workability. SPs will undergo degradation by coupled radiolytic and hydrolytic effects in the pore solution leading to the formation of potentially complexing degradation products. The objective was to study the potential effect of radiolyzed superplasticizers contained in cement-based materials on radionuclide uptake. The Eu speciation and solubility with organic ligands resulting from the degradation of SPs were studied for the two solutions and the results were compared. Two different SPs were selected, a polycarboxylate ether and a polynapthalene sulfonate. Two different protocols were followed: direct irradiation of the solution containing the superplasticizer, and irradiation of the compacted cement sample followed by extraction of the pore water. Solubility enhancements observed in artificial cement waters are not representative of real cement pore water interactions, in agreement with other studies. Finally, the effects of alkaline hydrolysis and radiolysis of SPs on Eu solubility in pore water are limited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130269DOI Listing

Publication Analysis

Top Keywords

pore water
12
artificial cement
8
cement pore
8
cement-based materials
8
cement
5
pore
5
sps
5
radiolysis euiii-superplasticiser
4
euiii-superplasticiser interactions
4
interactions artificial
4

Similar Publications

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at different immersion durations was analyzed using low-field nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

In this study, the novel activated carbon developed from fruit stone, through hydrothermal treatment at low pressure and temperature, was utilized for the removal of 4-nitrophenol, 4-chlorophenol, and phenol from water. The activated carbon produced (AC-HTPEFS) showed a well-developed porosity with a surface area of 569 m g and a total pore volume of 0.342 cm g.

View Article and Find Full Text PDF

Herein, the study explores a composite modification approach to enhance the use of recycled concrete aggregate (RCA) in sustainable construction by combining accelerated carbonation (AC) and nano-silica immersion (NS). RCA, a major source of construction waste, faces challenges in achieving comparable properties to virgin aggregates. Nano-silica, a potent pozzolan, is added to fill micro-cracks and voids in RCA, improving its bonding and strength.

View Article and Find Full Text PDF

The widespread use of antibiotics such as fluoroquinolones (FQs) has raised environmental and health concerns. This study is innovative as we investigate the removal of ciprofloxacin (CIP) and norfloxacin (NOR) from water using activated carbon derived from cupuaçu bark (CAC). This previously discarded biomass is now a low-cost raw material for the production of activated carbon, boosting the local economy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!