Neuromuscular system of the causative agent of dicrocoeliosis, Dicrocoelium lanceatum. II. Neuropeptide FMRFamide immunoreactivity in nervous system.

Zoology (Jena)

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Institute of Zoology of Scientific Center for Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, P. Sevaka str.,7, Yerevan 0014, Armenia. Electronic address:

Published: December 2022

The parasitic flatworm, trematoda Dicrocoelium lanceatum or lancet fluke is the causative agent of a widespread parasite disease of grazing ruminants, dicrocoeliosis. The aim of this work is the study of the presence and localization of neuropeptide FMRFamide immunoreactive elements in the nervous system of D. lanceatum using immunocytochemical technique and confocal scanning laser microscopy. For the first time the data on the presence and distribution of the FMRFamide-immunopositive components in the central and peripheral departments of the nervous system of D. lanceatum has been obtained. FMRFamidergic neurons and neurites were identified in paired brain ganglia, in the brain commissure, longitudinal nerve cords and connective nerve commissures. The innervation of the oral and ventral suckers by peptidergic nerve structures was revealed. The distal part of the reproductive system is innervated by FMRFamide immunopositive neurites. The data obtained suggest that the neuropeptides of FMRFamide family can be involved in the regulation of functions of the attachment organs and the reproductive system in D. lanceatum. The study of neurotransmitters and their functions in flatworms expand our knowledge on the structure and function of the nervous system of trematodes of various taxonomic groups. The results obtained on the morphological organization of D. lanceatum nervous system support the exploitation of the FMRFamidergic components as an anthelmintic target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2022.126054DOI Listing

Publication Analysis

Top Keywords

nervous system
20
system lanceatum
12
causative agent
8
dicrocoelium lanceatum
8
neuropeptide fmrfamide
8
reproductive system
8
system
7
lanceatum
6
nervous
5
neuromuscular system
4

Similar Publications

Correspondence to the Editor: Reirradiation in Paediatric Tumors of the Central Nervous System: Outcome and Side Effects After Implementing National Guidelines.

Clin Oncol (R Coll Radiol)

January 2025

RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.

View Article and Find Full Text PDF

Neoplastic meningitis, also known as leptomeningeal metastases, is a rare clinical entity seen in less than 1%-2% of primary nervous system tumors. Diagnosis of leptomeningeal metastases is difficult and is achieved by cytologic evidence of malignant cells in cerebrospinal fluid, or demonstration of radiologic abnormality. 18F-FDG PET/CT can detect leptomeningeal metastases before anatomical changes.

View Article and Find Full Text PDF

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!