Dense local haplotypes can now readily be extracted from long-read or droplet-based sequence data. However, these methods struggle to combine subchromosomal haplotype blocks into global chromosome-length haplotypes. Strand-seq is a single cell sequencing technique that uses read orientation to capture sparse global phase information by sequencing only one of two DNA strands for each parental homolog. In combination with dense local haplotypes from other technologies, Strand-seq data can be used to obtain complete chromosome-length phase information. In this chapter, we run the R package StrandPhaseR to phase SNVs using publicly available sequence data for sample HG005 of the Genome in a Bottle project.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2819-5_12 | DOI Listing |
Insect Biochem Mol Biol
January 2025
College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. Electronic address:
The cotton-melon aphid Aphis gossypii Glover is a severe pest worldwide. Interhaplotype genomic variation can be used as a starting point to analyze the adaptability of Ap. gossypii.
View Article and Find Full Text PDFGenomic characterization has revealed widespread structural complexity in cancer karyotypes, however shotgun sequencing cannot resolve genomic rearrangements with chromosome-length continuity. Here, we describe a two-tiered approach to determine the segmental composition of rearranged chromosomes with haplotype resolution. First, we present , a new method for robust determination of chromosomal haplotypes using cancer Hi-C data.
View Article and Find Full Text PDFBioinformatics
November 2023
European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
Summary: Single-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardized workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalization module, integration of the single-cell nucleosome occupancy and genetic variation analysis SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report.
View Article and Find Full Text PDFbioRxiv
July 2023
European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
Single-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardised workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalisation module, integration of the scNOVA SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report.
View Article and Find Full Text PDFBMC Genomics
February 2023
UWA School of Agriculture and Environment, The University of Western Australia, 6009, Crawley, WA, Australia.
Background: Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!