Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Many clinical studies have reported the high success rate of the All-on-4 concept. In the present study, we aimed to compare the stress distribution with different tilted distal implants and cantilever lengths in an All-on-4 system using the two-dimensional photoelastic method and to establish the All-on-4 implant photoelastic model by computer-aided design (CAD) and rapid prototyping (RP). METHODS: The data of the human edentulous mandible were acquired by computed tomography (CT). Three human edentulous mandible All-on-4 implant models with different distally inclined implant holes were fabricated using Mimic, Geomagic Studio software, and a light solidifying fast shaping machine. Then the final photoelastic models were established through the traditional method. Each of the three models had four NobelSpeedy Replace implants between the interforaminal regions. The two posterior implants were placed 0, 15, and 45 degrees distally before the mental foramen. The four implants were splinted by wrought cobalt-chromium alloy frameworks. Each of the three photoelastic models was submitted to a 150 N vertical load at five points on the framework: the central fossa of the mandibular first molar, and 0 mm, 5 mm, 10 mm, and 15 mm of the cantilever length. The stress produced in the models was photographed with a digital camera, and the highest value of the stressed fringe pattern was recorded.
Results: The All-on-4 implant photoelastic model established by CAD and RP was highly controllable and easy to modify. The position and inclination of implants were accurate, and the frameworks could be passively emplaced. The stress values were higher around a single tilted implant compared with the distal implant in All-on-4 with the same inclination. The 0-degree distal implant and 45-degree distal implant demonstrated the highest and lowest stress when loading at the central fossa of the mandibular first molar, respectively. With the same inclination of distal implant, the peri-implant bone stress increased as the length of cantilever increased.
Conclusion: The method of establishing the All-on-4 implant photoelastic model by CAD and RP was highly controllable, convenient, fast, and accurate. The tilted implants splinted in the fully fixed prosthesis with reduced cantilever lengths did not increase the stress level compared with the vertical distal implants.And this illustrated that the influence of cantilever on stress distribution was greater than the influence of implant inlination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636816 | PMC |
http://dx.doi.org/10.1186/s12903-022-02520-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!